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With the goal of shaping a smart, economically-sustainable palm oil refining industry, this paper aims to 

improve the prediction modelling of Refined, Bleached and Deodorized Palm Oil (RBDPO) quality for early 

quality fault detection and remediation via the novel use of a moving windows form of prediction in addition to 

the conventional static window form. In this study, both Multiple Least Squares Regression (MLSR) and Partial 

Least Squares Regression (PLSR) model training techniques and prediction computations are carried out in 

the form of two moving data windows types, namely the expanding and rolling fixed-size data windows, 

together with the conventional static window form of prediction as control. Prediction improvement is observed 

consistently across both regression techniques when carried out in moving windows form, where both types of 

moving windows predictions, i.e. expanding and rolling windows, have fared significantly better than the static 

window form, with an average prediction error reduction of 20.6 % for Free Fatty Acid prediction, 55.9 % for 

Moisture Content prediction, 32.6 % for Iodine Value prediction and 34.2 % for Colour Value prediction in 

RBDPO. Among the moving windows themselves, the superiority of expanding windows over rolling windows 

and vice versa is insignificant. On the whole, this study paves the way for a revamped RBDPO quality 

prediction form which better reflects the dynamic, transient nature of the palm oil refining process, thus further 

consolidating its reliability for widespread practical use. 

1. Introduction 

While palm oil has been a commodity favored in oleochemical research, concerns have been raised regarding 

on the imbalance in research strategies since the efforts are geared towards technical topics in favor of 

sustainability issues in palm oil production (Hansen et al., 2015). This study is thusly indirectly oriented 

towards the economical and quality sustainability aspect of palm oil refining, in which the predictive modelling 

of RBDPO quality as explored here is expected to provide quality forecasts which allow operators to monitor 

product quality in advance and to perform early remediations of crude oil feed. If substandard RBDPO quality 

could be predicted and prevented, it will reduce the need for cost-and-energy intensive recycling processes, 

which according to Makky and Soni (2014), can amount up to an hourly opportunity loss of MYR 159,000 due 

to excessive energy dedicated to pumps and process equipment during re-processing. With improved 

economic performance, the sustainable development of palm oil refinery plants can be further encouraged, 

thus positively reinforcing the path towards a smarter, sustainable palm oil refining industry (Ngan et al., 

2018). To a certain extent, the implementation of RBDPO quality prediction also caters to the environmental 

sustainability aspect, where scraps and waste can be minimized as the production of off-spec products can be 
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predicted beforehand. Excessive spent bleaching earth and other refining reagents, which could severely 

contaminate landfills and are in dire need of treatment before being disposal (Lau et al., 2019), can be 

reduced in the first place with less redundant processing in refineries. 

Palm oil predictive modelling was first initiated by Yusof et al. (2003) via the use of Artificial Neural Networks 

(ANN). Due to the black-box nature of ANN and its difficult parameter tuning process (Ma and Gomez, 2015), 

Noor et al. (2017) and Rashid et al. (2017) utilized multivariate regression algorithms, which are relatively 

more interpretable, for model training instead. A distantly-related study on Palm Oil Mill Effluent by Che Ithnin 

and Hashim (2019) also implemented the use of regression, specifically the Multiple Least Squares 

Regression (MLSR) technique for predictive modeling, whereas the aforementioned works of Noor et al. 

(2017) particularly utilized a technique in the form of the Partial Least Squares Regression (PLSR) for RBDPO 

quality prediction. While all predictive modelling studies in the palm oil industry up until this point have come 

up with various techniques on model training, they are carried out in a conventional single static window form, 

where a generalized model is generated from a training dataset and is applied on an entirely different testing 

dataset window in one go to produce a series of forecasted values. A major limitation of static window usage 

according to Black et al. (2014) is that it assumes the process is constant for both training and testing dataset 

windows and ignores any possible data distribution shifts over time. Moving windows prediction on the other 

hand, which is divided into either expanding and rolling windows prediction, incorporate the effects of 

changing data structure over time where prediction is carried out successively while the training set is 

repeatedly updated. While moving windows are used in stock returns and financial forecasting with visible 

improvement (39.5 % – 45.9 % error reduction as documented by case study of Black et al. (2014)) over static 

prediction, it is rarely found in the predictive modelling of manufacturing processes, let alone the palm oil 

industry, due to its elusiveness outside of the economics field and its relative tediousness in execution. 

In whole, the key objective of this paper is to extend the RBDPO quality prediction framework established by 

Noor et al. (2017) and other authors by integrating the novel use of moving windows strategy in palm oil 

prediction with available MLSR and PLSR training techniques, and comparing its prediction accuracy with the 

conventional static window prediction form in terms of Mean Squared Errors of Prediction (MSEP). MSEP for 

both rolling and expanding windows will be further compared among themselves to determine the superiority 

of one form over the other, if present. 

2. Methodology 

2.1 Data collection and preparation 

Large amounts of data were collected from the Lahad Datu Edible Oils refinery plant. The input variables for 

this prediction study, which are increased substantially from previous studies, consist of the Free Fatty Acid 

percentage (% FFA) of crude palm oil (CPO), the moisture content percentage (% MC) of CPO, the Iodine 

Value (IV) of CPO, the Deterioration of Bleachability Index (DOBI) of CPO, the phosphoric acid flowrate during 

degumming, the bleaching earth dosage during bleaching, and the vacuum pressure during deodorizing. The 

output variables were selected based on the key commercial quality parameters of RBDPO, which consist of 

the % FFA of RBDPO, the % MC of RBDPO, the IV of RBDPO, and the Colour Value (CV) of RBDPO. 500 

observations were collected for each variable at a 30-minute interval. Prior to model training, the collected 

data were pre-processed beforehand by using statistical signal processing tools as proposed by Rosely et al. 

(2017) to fulfil the Central Limit Theorem of a large dataset. Firstly, data standardization was carried out to 

ensure a uniform data distribution for every variable, which was followed by box-plotting to select the subset 

with the highest normality. For the selected subset, the corresponding autocorrelation plots for CPO and 

RBDPO variables were plotted to identify the optimum sampling time where data points exist at high 

randomness for fixed intervals. Finally, cross-correlation plots for each CPO-RBDPO variable pair were 

generated to determine the processing time based on the optimum sampling time. All output observations 

were forward-shifted for a unit of processing time so that the current input observations were mapped onto 

future output observations to allow the prediction of output RBDPO qualities in advance. 

2.2 Model training using Multiple Least Squares and Partial Least Squares Regression techniques 

The pruned dataset was divided into a training and a testing dataset, in which the former was used to 

generate a generalized input-output mathematical model Y=Xβ, where Y is a m-by-p output training subset 

matrix with p variables and m observations, X is a m-by-n input training subset matrix with n variables and m 

observations, and β is a n-by-p predictor coefficient matrix. To generate the model i.e. model training, β was 

computed differently using MLSR or PLSR techniques. For the MLSR technique, Eq(1) was used. 

𝛽 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) (1) 
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For the PLSR technique, the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm was used for β 

computation where X is decomposed into score matrix T and loading matrix P, and Y is decomposed into 

score matrix U and loading matrix Q in an iterative fashion while maximizing X-Y covariance, W, at the same 

time. The detailed algorithm is explained thoroughly in the works of Noor et al. (2017). 

2.3 Model training and prediction via static, expanding and rolling windows forms 

The prediction process was carried out after model training by multiplying the predictor coefficient β to the 

input subset XTS of the testing dataset to generate the predicted output RBDPO data Ŷ. Model training and 

prediction were carried out in three main forms, where (b) and (c) are novel implementations. 

a. Static window training and prediction 

During model training, regression was conducted on the entire training input subset window X and training 

output subset window Y to generate a single β matrix. After that, β was multiplied to a separate testing 

input subset window XTS to generate a series of predicted values Ŷ in one go, assuming the mutually 

exclusive training and testing datasets were having the same distribution. 

b. Expanding windows training and prediction 

Prior to training and prediction, the training and testing input subsets (X and XTS) were concatenated into 

a single joint input set Xj, whereas the training and testing output subsets (Y and YTS) were concatenated 

into a joint output set Yj. The first m observations in Xj and Yj were selected as the initiating windows Xw1 

and Yw1, where the window size m is the original number of observations (number of rows) in the training 

input subset X. The first β, i.e. β1, was calculated for the initiating windows Xw1 and Yw1, via either 

regression methods. β1 was subsequently multiplied with the (m+1)th observation in Xj, i.e. xm+1, to obtain 

the first forecasted output observation, ŷ1. A new pair of input and output data windows Xw2 and Yw2 were 

then assigned by adding the next Xj and Yj observation into the original window. A new β2 was computed 

by performing regression on the new windows Xw2 and Yw2, which was in turn multiplied with the (m+2)th 

observation in Xj, xm+2, to give the next predicted observation, ŷ2. The window assignment, training and 

prediction processes were repeated as the data windows got one size larger for each update. The 

predicted observations from every window ŷ1, ŷ2,…, ŷ𝑛 were collected into the predicted output set Ŷ.  

c. Rolling windows training and prediction 

The training and prediction process of the rolling windows form was the same as that of the expanding 

windows up until the assignment of the new window pairs Xw2 and Yw2 and subsequent new window pairs. 

Now instead of just adding the next Xj and Yj observation to the original input and output windows, an 

added step was required where the first observation in both the original input and output windows were 

simultaneously removed. Thus, the window size remained constant for each update as the data input and 

output data windows Xw and Yw “roll on” instead of “expanding” to the next. 

For both moving windows cases, there were (M-m) consecutive windows altogether with (M-m) predicted 

output observations ŷ1, ŷ2,…, ŷ𝑀−𝑚, where M is the total row number of the joint input set Xj, and m is the 

initiating window size. Overall, to test the prediction accuracy, the MSEP metric was used (in agreement to 

previous predictive modelling studies), as shown in Eq(2). 

𝑀𝑆𝐸𝑃 = (∑ 𝑦𝑇𝑆,𝑖
𝑁
𝑖=1 − ŷ𝑖)/𝑁  (2) 

Where N is the number of observations in the output testing dataset YTS, yTS,i is the ith observation in YTS, and 

ŷ𝑖 is the ith observation in Ŷ. Control chart plotting was optionally used as a mean to monitor the predicted 

palm oil quality as time progressed. 

3. Results and discussion 

The data pre-processing stage based on the methodology proposed by Rosely et al. (2017) yielded a pruned 

dataset with an optimal data range with high normality boxplots of 25 data points for training and subsequent 

25 data points for testing. Among the autocorrelational plots of the selected dataset, the plots for the CPO % 

FFA showed 8 lags to fall beneath the confidence bands, which signified an optimum sampling time of 8 

lags*original sampling time (0.5h) = 4 hours for high data randomness and minimum heredity effects. This was 

followed by cross-correlational plotting, where the plots of CPO-RBDPO % FFA variable pair once again 

showed 4 lags to cross the zero boundary, and the statistical processing time was thusly determined as 4 

lags*optimum sampling time (4h) = 16 hours. This allowed the output quality of RBDPO in terms of % FFA, % 

MC, IV and CV to be predicted at 16 hours ahead of time, before CPO with a current % FFA, % MC, IV and 

DOBI was processed. 

Subsequently, model training and prediction were carried out with a combination of either one of two model 

training techniques (MLSR and PLSR) and either one of three training and prediction forms (static window, 
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expanding windows and rolling windows). Altogether there were six training and prediction combinations for 

each of the four output RBDPO variables. The MSEP of each combination for each output variable (RBDPO % 

FFA, % MC, IV and CV) are depicted visually on bar charts in Figures 1a, 1b, 1c, and 1d. 

 

Figure 1: MSEP values for predicted (a) % FFA; (b) % MC; (c) IV; (d) CV in RBDPO 

As a minor observation, the usage of either MLSR and PLSR gives visually similar results. The latter 

technique gives a slight error increase of 4.92 %, 3.83 %, 1.46 % and 4.85 % on average for % FFA, % MC, 

IV and CV predictions, which could be attributed to a slight over-removal of data in discarded components 

despite multicollinearity treatment during PLSR training, as hypothesized by Carley et al. (2004). 

Nevertheless, in this study, the effects of using either regression techniques are not nearly as pronounced and 

evident as the effects of selecting different types of windows for model training and prediction on the prediction 

accuracy. The novel usage of both dynamically expanding and rolling windows has led to a substantial 

decrease in MSEP compared to the conventional usage of a single static prediction window for all RBDPO 

output variables, as shown in Figure 1. The percentage of improvement of both moving windows prediction 

forms, measured in terms of percentage reduction in MSEP when compared to that of static window 

prediction, is recorded in Table 1 for each output variable. 

Table 1: Percentage improvement of moving windows prediction over static window prediction 

 % FFA % MC IV CV 

% Improvement of expanding windows prediction 23.76 53.80 33.03 35.24 

% Improvement of rolling windows prediction 17.44 58.05 32.07 36.07 

Average % improvement of moving windows prediction 20.60 55.92 32.55 35.66 

 

As shown in Table 1, the improvement of selecting either form of moving windows prediction over static 

window is significant, with an average improvement of 20.60 % for % FFA prediction, 55.92 % for % MC 

prediction, 32.55 % for IV prediction, and 35.66 % for CV prediction. When moving windows are implemented, 

prediction error reduction is observed consistently across different types of regression techniques used, thus 

implying that the usage of moving windows objectively leads to a better prediction regardless of the model 

training techniques, though it should be noted that the study is only limited to two notable techniques, i.e. 

MLSR and PLSR. In comparison to the previous PLSR prediction study by Noor et al. (2017), which gave an 
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MSEP of 1.24×10-4 for % FFA prediction, 1.81×10-5 for % MC prediction, and 8.53×10-3 for IV prediction (CV 

was not considered in previous studies), this study has also shown a prominent improvement of 56.5 %, 50.4 

% and 41.3 % on average for % FFA, % MC and IV. Similar to the outcomes in this study itself, the 

improvement of this study over the previous works by Noor et al. (2017) could be attributed to the utilization of 

moving windows prediction in favor of the conventional static window form, in addition to the usage of an 

increased amount of input variables for model training in this framework. Overall, the substantial improvement 

resulted from the implementation of moving windows is aligned with what has been observed in the economics 

field as well, with an error reduction of 39.5 % – 45.9 % in rolling window forecasts of stock returns compared 

to standard static window forecasts as recorded in the case study of Black et al. (2019). In this situation, when 

comparing among both moving windows, i.e. expanding and rolling windows themselves, the MSEP 

differences between both conditions are relatively insignificant, with expanding windows being superior for % 

FFA and IV prediction, and the vice versa for % MC and CV prediction, suggesting that the expanding 

windows form of prediction seemed to be able to capture the data drift as well as the rolling windows form did 

due to a small sample.  

 

Figure 2: RBDPO Colour Value control chart with actual data, static, expanding and rolling window predictions 

When the actual and predicted data for all window forms are plotted on a quality control chart, as shown in an 

example of a Shewhart chart of the CV parameter of RBDPO in Figure 2, it is evident that the predicted values 

from both expanding and rolling windows showed a significantly higher visual adherence than that of static 

window towards the actual testing data values on the chart. The static window form has also produced a false 

alarm, i.e. an out-of-control prediction, on the 13th observation whereas both similar predicted trends from 

moving windows are correctly lying within the control limits. When compared among themselves, the 

superiority of either rolling or expanding windows is insignificant, where each shows a better prediction 

accuracy over the other at both halves of the process separately. 

Admittedly, there are shortcomings while implementing the moving windows strategy in this study. The 

downside of using dynamic moving windows compared to static window, is the relative tediousness of their 

execution (there were 50-25 = 25 windows in this case), but the huge increase in prediction reliability of 36.2 

% on average warrants its slightly painstaking implementation. Another notable limitation in the study is the 

small sample size and prediction period, which should be extended to conclusively determine the disparity 

between expanding windows and rolling windows prediction in the long run. Meanwhile to improve model 

training, more process variables from the degumming, bleaching and deodorizing stages should be 

considered, though variable selection strategies should be introduced to remove excess irrelevant features 

from the mix. Nonetheless, the implication of this study in spite of its limitations is apparent as it paves the 

path towards a significantly improved palm oil quality prediction framework by integrating the usage of moving 

windows outside of their usual applications in financial forecasting. In a practical sense, the moving windows 

strategies in palm oil prediction enable the forecasts to more accurately match the data drifts in a transient 

refining process (as observed similarly in stock returns forecasting), thus resulting in an increased reliability in 

prediction which better reflects the production quality in the long run. This in turn allows the operators to 

perform correct remedial decisions more confidently in the event of subpar predicted qualities, while 
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consequently being less reliant on energy-and-resource-intensive recycling and redundant processing efforts. 

With sufficient data collection and input-output variable identification, the moving windows prediction 

framework as enumerated in this paper can even be reiterated and applied in other time series predictive 

modelling studies not just in palm oil refining, but in other manufacturing industries to reap its benefits as well. 

4. Conclusions and recommendations 

The predictive modelling of RBDPO refining process has been successfully performed by using simple MLSR 

and PLSR with an integrated use of moving windows strategies for model training and prediction. The novel 

usage of rolling and expanding windows significantly improves prediction accuracy over conventional static 

window predictions with a substantial average error reduction of 36.2 %, and the moving windows prediction 

improvement is observed objectively in spite of different regression techniques used in this case. As such, the 

moving windows strategies are greatly recommended for future predictive modelling studies despite their 

tediousness in execution. For such future studies, a larger sample size and longer prediction periods are 

recommended to further compare the superiority of rolling windows over expanding windows or vice versa in 

the long run, whereas the number of modelling variables could be increased with subsequent introduction of 

appropriate variable selection strategies to improve model training. A recommended addition to the predictive 

modelling framework would be an extra fault diagnosis step, where problematic input variables could be 

isolated in the event of predicted out-of-controls and appropriately targeted and remedied. In a greater sense, 

through this line of research, the reliability and practicality of prediction in palm oil refining industries could be 

greatly improved along the way, thus laying the groundwork that warrants a confident implementation of 

predictive modelling in palm oil refineries for economical and quality sustainability on a wider scale. 
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