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Water-in-diesel emulsion, also known as WIDE fuel, is one of the promising alternative fuels for diesel engines 

due to its positive impact on the performance and combustion characteristics of the engine, while at the same 

time reducing the emissions of NOx and particulate matter, without the need to modify the diesel engine. 

Cetane number is a key property that is considered in the formulation of diesel fuel. Cetane number is used to 

determine the ignition quality of fuel. One of the limitations in designing the diesel fuel formulation is the limited 

experimental data. The objective of this paper is to develop the cetane number property estimations for a pure 

compound. A property model was developed using the group contribution approach. In this approach, the 

molecular structure of the chemical was represented and divided into three levels, namely first-order (220 

groups), second-order (130 groups), and third-order (74 groups). The cetane number with the group 

contribution occurrences of 271 chemicals were regressed using linear regression in MATLAB software to 

generate the contribution values of the three group levels. The regression step yielded contribution values of 

43 groups for the first-order, 35 groups for the second-order, and 7 for the third-order. The coefficient of 

determination, R2, for the cetane number property models was 0.9447, indicating that the proposed model had 

a good correlation and is reliable to use. 

1. Introduction 

The diesel engine is a type of internal combustion engine, which offers better fuel-to-power conversion 

efficiency. Many studies have explored the potential of diesel blends or water-in-diesel emulsion fuel as a 

promising fuel due to its positive impact on the performance, combustion characteristics, and emission factors 

of the engine.  Cetane number (CN) is one of the most significant properties for determining the ignition quality 

of an engine. According to Eloisa et al. (2011), CN influences the engine start ability, emissions, and peak 

cylinder pressure and combustion noise. When the diesel fuel mixture or emulsion is formulated, all the 

chemicals involved during formulation will determine the physical properties of the fuel. Dhinesh and 

Annamalai (2018) found that by adding cerium oxide nanoparticles in emulsion fuel, the quality of the cetane 

number of the emulsion fuel was improved. Leng et al. (2018) reported that adding the surfactant to the 

emulsion improved the cold-flow properties and ignition delay (cetane number) of the diesel fuel. Physical and 

thermodynamic property prediction models for pure compounds are one of the vital prerequisites for 

performing tasks such as simulation and optimization and computer-aided molecular/mixture (product) design, 

especially when the experimental value for the property of the pure compound is not available or limited 

(Hukkerikar et al., 2012a). In the domain of property prediction models, a few researchers have implemented 

group-contribution (GC) methods to predict pure compound properties such as open cup flash point 

(Constantinou and Gani, 1994), melting point, boiling point (Marrero and Gani, 2001), viscosity and surface 

tension (Conte et al., 2008), lethal concentration, LC50 (Hukkerikar et al., 2012a), and heat of combustion 

(Yunus and Zahari, 2017). All these proposed models are generally suitable to obtain the needed property 

values since these methods provide the advantage of quick estimates without requiring substantial 

computational work. In GC methods, the property of a component is a function of structurally dependent 

parameters, which are determined as a function of the frequency of the groups that represent the molecules 
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and their contributions (Hukkerikar et al., 2012b). The GC method has proven able to provide a good 

prediction and only requires chemical structure as input (Yunus and Zahari, 2017). Due to its predictive 

capability, the GC method was considered for the CN estimation in this study. The objective of this paper is to 

propose a CN property model using the group contribution (GC) method. In the group-contribution approach, 

the molecular structure of the chemical is divided into a set of functional groups, where each group contributes 

to the value of the property (Conte et al., 2008). 

2. Methodology 

There are five steps involved in the CN property estimation, as illustrated in Figure 1 below: 

 

Figure 1: Methodology for cetane number (CN) property estimation  

2.1 Group contribution sets  

In this study, the functional group of the chemical was defined according to Marrero and Gani, (2001). This 

definition was employed to predict the variety of properties such as critical temperature, critical pressure, the 

Standard Gibbs energy, and the Standard Enthalpy of Vaporization covering more than 2,000 compounds. For 

the GC method, generally, the property estimation of chemicals is defined as three levels, namely first-order, 

second-order, and third-order groups. The basic (first) level uses the contributions of first-order groups that 

describe a wide variety of organic compounds. The higher (second) level provides additional structural 

information, which is not covered by the first-order groups, and thus provides corrections to the estimation at 

the first-level. The final level (third-order) provides the adjustment to the prediction made from the first and 

second level, where the contributions from the structure of complex molecules are calculated (Conte et al., 

2008). More detailed information and distribution of each level are given in Figure 2. 

 

 

Figure 2: The description of the multilevel approach for the group contribution method (Conte et al., 2008). 

Eq(1) below, as given by Marrero and Gani (2001), was used to represent the general form of the function f(X) 

of the target property X for the property estimation model: 

𝑓(𝑋)= ∑ 𝑁𝑖𝐶𝑖 +

𝑖

 ∑ 𝑀𝑗𝐷𝑗 +

𝑗

∑ 𝑂𝑘𝐸𝑘

𝑘

 (1) 

Where𝐶𝑖, 𝐷𝑗 and 𝐸𝑘 are the contribution values for the first-order, second-order, and third-order groups with 𝑁𝑖, 

𝑀𝑗, and 𝑂𝑘  being the occurrences of each group.  

• Group contribution setsStep 1

• Data collectionStep 2

• Property function selectionStep 3

• Parameter regressionStep 4

• Statistical analysisStep 5
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2.2 Data collection  

A CN dataset was collected as the initial database from Yanowitz et al., (2017) Compendium of Experimental 

Cetane Numbers, which contains 333 chemicals from the common families (alkanes, alkenes, ethers, esters, 

aldehydes, ketones, alcohols, and furan). The chemical structures of the compounds were identified and 

defined for the first-, second- and third-order levels according to Marrero and Gani (2001). Also, the 

occurrences of the chemicals were collected using ICAS software. The occurrences of the group contribution 

for all chemicals were used for the model regression in Step 4.  

2.3 Property function selection 

The property function was selected based on the CN trend observed in the data collected in Step 2. This 

function must show the best possible fit with the experimental data and should also provide good extrapolation 

capability. The collected experimental data on CN was plotted against the occurrences of the CH2 group for 

various families of compounds to identify the best model for CN property. The resulting trend from the data 

collected shows that the property function is a linear function of the CN property function. Hence, the CN 

model is represented by Eq(2): 

𝐶𝑁= 𝐶𝑁0 + ∑ 𝑁𝑖𝐶𝑖 +

𝑖

 ∑ 𝑀𝑗𝐷𝑗 +

𝑗

∑ 𝑂𝑘𝐸𝑘

𝑘

 (2) 

2.4 Parameter regression 

The Levenberg-Marquardt method was selected for the regression step to minimize the sum of squares of the 

differences between the experimental and estimated values of the CN property, as per the method outlined in 

Conte et al., (2008) for the parameter regression of surface tension and viscosity. The regression step was 

done using MATLAB. For Eq(2), CN is the cetane number of the chemical and CNo is the universal constant 

for the model. The contribution values of the contribution groups Ci, Dj, and Ek was determined in three steps. 

The first step involved determining the universal constant, CNo, and the contribution value of the first-order 

groups. The results of the universal constant and the group contribution value of the first-order group were 

used to determine the contribution value of the second-order group, Dj. The final step was the regression of 

the contribution value for the third-order group, Ek, using the results of the first and second steps. The final 

results of the regression step, which consists of the universal constant and the contribution values of the three 

levels, were analyzed to identify the outliers in the experimental data. The identified outliers were removed 

and the GC model parameters regressed again. Following that, 35 chemicals were identified as the outliers, 

as these did not follow the average trend. Meanwhile, 298 chemicals that fulfilled the trend were used for 

parameter regression. The training and testing data were divided randomly, with 271 chemicals as the training 

set and 26 chemicals as the testing set. The testing step is known as the validation step to verify the capability 

of the model.  

2.5 Statistical analysis 

The statistical analyses employed in this study are the Standard Deviation (SD), the Relative Deviation (RD), 

the Average Absolute Error (AAE), and the Average Relative Error (ARE), as defined by Eq(3) to Eq(6). All 

these equations are commonly used to verify the property model developed using the GC-based method 

(Marrero and Gani, 2001). 

𝑆𝐷= √∑
(𝜃𝑖

𝑒𝑠𝑡 − 𝜃𝑖
𝑒𝑥𝑝

)2

𝑁
 (3) 

𝑅𝐷 =  
|𝜃𝑖

𝑒𝑠𝑡 −  𝜃𝑖
𝑒𝑥𝑝

|

𝜃𝑖
𝑒𝑥𝑝 100   (4) 

𝐴𝐴𝐸 =  ∑
|𝜃𝑖

𝑒𝑠𝑡 −  𝜃𝑖
𝑒𝑥𝑝 

|

𝑁
   (5) 

𝐴𝑅𝐸 =  
∑ 𝑅𝐷𝑖

𝑁
   (6) 
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Where N is the number of experimental data and 𝜃𝑖
𝑒𝑠𝑡 and 𝜃𝑖

𝑒𝑥𝑝
 are the predicted cetane number and 

experimental cetane number. The results of the statistical analysis are shown in Section 3 below, where a 

good prediction model is demonstrated with an R2 value close to unity.  

3. Results and discussion 

The results of the contribution values are shown in Tables 1, 2, and 3 for the first-order, second-order, and 

third-order groups. From these tables, it can be concluded that the regression of the experimental data 

generated (43, 35, and 7) group contribution values for the first, second, and third-order groups. It is important 

to highlight that all the groups listed in Tables 1 to 3 followed the functional groups presented in Marrero and 

Gani, (2001) for the first-, second- and third-order levels. The results in Tables 1 to 3 were used to predict the 

CN of the chemicals in the training dataset. The plots of the estimated values of CN were then compared to 

the experimental training and testing data, as shown in Figure 3. The model with the three-level groups 

predicted the CN accurately, with an R2 value equal to 0.9447 and 0.926 for the training set and the testing 

set. The CNo value based on Eq(2) is 16.04.  

 

  

(a) (b) 

Figure 3: Estimated CN versus experimental CN for (a) training data and (b) testing data 

Table 1: Contribution values of the first-order group  

No.  Group Ci  No.  Group Ci 

1 CH3 3.49  23 CHCO -11.296 

2 CH2 4.879  24 CHO 20.867 

3 CH -3.7  25 CH3COO -5.795 

4 C -7.296  26 CH2COO -12.851 

5 CH2=CH -1.174  27 aC-COO -4.005 

6 CH=CH -8.088  28 COO -6.28 

7 CH2=C -2.623  29 CH3O 15.253 

8 CH=C -3.646  30 CH-O -2.696 

9 aCH -2.76  31 aC-O -0.385 

10 aC 0.09  32 OCH2CH2OH -0.832 

11 aC -3.848  33 OCH2CHOH -4.023 

12 aC -16.722  34 CH2cyc 1.557 

13 aC-CH3 0.49  35 CHcyc -1.354 

14 aC-CH2 -3.601  36 Ccyc -5.537 

15 aC-CH -11.132  37 CH=CHcyc -2.253 

16 aC-C -23  38 CH=Ccyc -4.766 

17 aC-CH=CH2 -22.999  39 CH2=Ccyc 1.047 

18 OH -13.769  40 O 1 

19 aC-OH 0.596  41 CO -7.022 

20 COOH -21.342  42 -O- 26.861 

21 CH3CO -5.334  43 Ccyc=C -3.811 

22 CH2CO -8.401     

R² = 0.9447
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Table 2: Contribution values of the second-order group 

No.  Group Dj  No. Group Dj 

1 (CH3)2CH 2.010  19 aC-CHn-O- (n in 1..2) -2.804 

2 (CH3)3C -3.767  20 aC-CH(CH3)2 4.235 

3 CH(CH3)CH(CH3) -7.785  21 (CHn=C)cyc-CH3 (n in 0..2) 2.141 

4 CH(CH3)C(CH3)2 -7.836  22 (CHn=C)cyc-CH2 (n in 0..2) -4.525 

5 CHn=CHm-CHp=CHk (k,m,n,p in 0..2) 4.047  23 CHcyc-CH3 0.025 

6 CH3-CHm=CHn (m,n in 0..2) -0.199  24 CHcyc-CH2 0.384 

7 CH2-CHm=CHn (m,n in 0..2) -0.595  25 CHcyc-CH -2.602 

8 CHp-CHm=CHn (m,n in 0..2; p in 0..1) 0.252  26 CHcyc-C 1.716 

9 CHCHO or CCHO -21.095  27 CHcyc-C=CHn (n in 1..2) -1.943 

10 CH3COCH2 -1.461  28 CHcyc-OH 2.654 

11 CHCOOH or CCOOH 12.637  29 Ccyc-CH3 0.043 

12 CH3COOCH or CH3COOC 8.058  30 AROMRINGs1s2 0.226 

13 CHOH -1.507  31 AROMRINGs1s3 0.618 

14 COH 5.850  32 AROMRINGs1s4 -5.665 

15 COO-CHn-CHm-OOC (n, m in 1..2) -3.885  33 AROMRINGs1s2s3 0.867 

16 OOC-CHm-CHm-COO (n, m in 1..2) 10.422  34 AROMRINGs1s2s4 0.717 

17 CHm-O-CHn=CHp (m,n,p in 0..3) -0.036  35 AROMRINGs1s3s5 -2.293 

18 CHn=CHm-COO-CHp (m,n,p in 0..3) -2.349     

Table 3: Contribution values of the third-order group 

No . Group Ek 

1 aC-CHncyc (fused rings) (n in 0..1) 4.569 

2 CH multiring 0.183 

3 C multiring -2.779 

4 aC-CHn-O-CHm-aC (different rings) (n,m in 0..2) 5.608 

5 AROM.FUSED[2] -9.330 

6 AROM.FUSED[2]s1 8.782 

7 AROM.FUSED[2]s2 9.603 

 

Table 4 shows the statistical results of the regression procedure for Step 1 to Step 3. The statistical parameter 

values (R2, AAE, ARE, and SD) are given for all three levels of the compounds in the dataset containing 271 

chemicals. The result better predicted the property if the regression step considered all three group 

contribution values to predict CN, as proven by the improvement in the R2 values and the reduced standard 

deviation.  

Table 4: Comparison of the statistical analysis of training data for the contribution of all group levels 

Statistical analysis  1st order 1st and 2nd order 1st, 2nd and 3rd order 

R2 0.9348 0.9445 0.9447 

Average absolute error, AAE 5.930 5.4206 5.39 

Average relative error, ARE 23.10 20.83 20.48 

Standard deviation, SD 7.482 6.904 6.8933 

 

To prove its capability, the model was tested using a testing dataset. The contribution values from Table 1 to 

Table 3 were used to predict the CN of the chemicals in the testing dataset. A comparison between the 

experimental CN and the estimated CN for 26 compounds is shown in Figure 3b. The R2 value of the 

predicted CN for the testing dataset was 0.926. Therefore, the predictive performance of the model is 

acceptable, at least for these compounds. Table 5 shows an example of the calculation of the CN value of 1-

decanol using the developed property model. For reference, the experimental value of CN for 1-decanol is 

50.3. By using this model, the prediction value of 1-decanol returned a value of 49.7. Therefore, the model 

developed using the group contribution method can accurately predict the cetane number (CN) of the 

compound.  
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Table 5: Prediction of the cetane number of 1-decanol 

Property Value 

Formula Molecule C10H22O 

Molecular structure 

 

Universal constant, CN0 16.04 

First-order group Group Contribution (Ci) Occurrences (Ni) 

 CH3 3.490  1 

 CH2 4.878  9 

 OH -13.769  1 

 Using Eq(2):   

 
𝐶𝑁= 𝐶𝑁0 + ∑ 𝑁𝑖𝐶𝑖 +

𝑖

 ∑ 𝑀𝑗𝐷𝑗 +

𝑗

∑ 𝑂𝑘𝐸𝑘

𝑘

  

CN = 16.04 + 1(3.49) + 9(4.878) + 1(-13.769) = 49.7 

4. Conclusion 

A cetane number (CN) property model was developed in this study and the performance of the model tested. 

The CN experimental data was compared to the estimated CN data to identify the prediction accuracy of the 

model. As a validation step, a set of testing data containing 26 chemicals was used to verify the prediction 

accuracy of the model. The R2 value of the training data and the testing data was 0.9447 and 0.926. The 

model developed using the group-contribution approach is therefore reliable and can thus serve as an 

alternative method to estimate the CN of nonionic surfactants. 
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