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Hydrogen is regarded as the fuel of future by having greater heating value than the conventional fuels and 

with zero carbon emission. Most of the previous supply chain studies only consider the application of 

hydrogen as transportation fuel. Taking Johor as a case study, this paper aims to develop a holistic 

optimization model that exploits the use of hydrogen for vehicle fueling and electricity generation. Oil palm 

biomass and solar energy are used as the energy sources to produce hydrogen and electricity to satisfy the 

local energy demand. Through this study, the optimal configuration of hydrogen supply chain in Johor has 

been identified and the associated cost is found to be 3,644,800 USD/d. 

1. Introduction 

The world energy demand has been elevating as a result of economic growth and development of global 

markets (Sáez-Martínez et al., 2016). Concurrently, the over-reliance on fossil fuels for energy generation has 

raised concerns regarding energy security and climate change. Thus, the transition of energy production from 

fossil fuels to renewable sources is crucial for a sustainable ecosystem. Numerous studies have been 

conducted to reduce the use of fossil resources by substituting with renewable energy supply, i.e. biomethane 

injection into natural gas distribution grid (Hoo et al., 2018) and biomass co-firing in coal-fired power plant 

(Mohd Idris, 2018). Hydrogen is an energy carrier that can be synthesized from both fossil resources and 

renewable resources (Palma et al., 2018). With its clean emission during combustion (Haron et al.,2017), 

hydrogen could serve as the fuel for fuel cell electric vehicles, fuel for combustion as well as electrical energy 

storage that stores the excess electricity generated from intermittent renewable sources (Mah et al., 2019). 

For smooth operation of hydrogen-based energy system, the hydrogen supply chain (HSC) must be well 

planned. In recent studies, Kim and Kim (2016) developed an optimization model to design and analyze the 

hydrogen supply system using onshore and offshore wind energy. The onshore wind farms were more 

preferable than offshore farms due to lower capital investment, while centralized hydrogen production system 

was more superior over the distributed system owing to economy of scales. Reuß et al. (2017) investigated 

the use of liquid organic hydrogen carriers (LOHC) as seasonal hydrogen storage to balance the fluctuating 

renewable electricity generation and fuel demand. Through their study, LOHC would be a promising option if 

salt cavern storage for hydrogen remains uncompetitive. Won et al. (2017) formulated a MILP model by 

integrating multiple resources and technologies in which hydrogen is only produced from renewable energy 

sources (RES). The model was validated through a case study on Jeju Island and results showed that capital 

cost contributed the most significant part to the expenditure of RES-based HSC. While most of the previous 

studies focus on the application of hydrogen in the transportation sector, this paper aims to develop a holistic 

optimization model that considers the use of hydrogen for electricity generation in addition to the 

transportation fuel. 
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2. Methodology 

2.1 Hydrogen supply chain superstructure 

The superstructure of hydrogen supply chain is illustrated in Figure 1, where the empty fruit bunches (EFB) 

and palm kernel shells (PKS) generated from palm oil mills serve as the raw materials of gasification process 

to produce hydrogen. Solar radiation will be collected through the photovoltaic (PV) panel and converted to 

electrical energy in the form of direct current. Inverter is used to convert electricity from direct current form into 

alternating current form. The electricity produced from solar radiation can be used to satisfy electricity demand 

of the district or converted into hydrogen via electrolysis. The hydrogen produced from gasification and 

electrolysis processes is stored in liquid form, which is then used to fulfill local hydrogen fuel demand or 

generate electricity through fuel cell to cater to the local electricity demand. Excess H2 produced in a district 

can be exported to other districts that have insufficient energy supply.  

 

Figure 1: Superstructure of integrated hydrogen supply chain 

2.2 Mathematical model 

The mixed-integer linear programming (MILP) model in this work is extended from the model proposed by 

Almaraz et al. (2014), where PV system and fuel cell system have been incorporated into the model to 

consider the electricity generation from hydrogen and the interconversion between electricity and hydrogen. 

2.2.1 Production constraints 

Eq(1) represents the mass balance of hydrogen product in each district:  

𝑃𝑇𝑖𝑔 = ∑ (𝑄𝑖𝑙𝑔𝑔′ − 𝑄𝑖𝑙𝑔′𝑔 )𝑙,𝑔′ + (𝐻2𝑖𝑔
𝑡𝑜𝑒 − 𝐻2𝑖𝑔

𝑓𝑟𝑜𝑚𝑒
) + 𝐷𝑇𝑖𝑔       ∀𝑖, 𝑔;   𝑔 ≠ 𝑔′  (1) 

where PTig is production rate of hydrogen form i in district g, Qilgg’ is amount of hydrogen form i delivered from 

district g to district g’ through transportation mode l , Qilg’g is amount of hydrogen form i delivered from district 

g’ to district g through transportation mode l and DTig is the hydrogen fuel demand in form i in district g. 

As shown in Eq(2), the total hydrogen production from biomass, PTig is equal to the sum of hydrogen 

produced from all types of production plants that utilize biomass as feedstock. Eq(3) illustrates that the 

capacity of each production plant should be within the lower and upper limits.    

𝑃𝑇𝑖𝑔 = ∑ 𝑃𝑅𝑝𝑖𝑔𝑝     ∀𝑖, 𝑔  (2) 

𝑃𝐶𝑎𝑝𝑝𝑖
𝑚𝑖𝑛𝑁𝑃𝑝𝑖𝑔 ≤ 𝑃𝑅𝑝𝑖𝑔 ≤ 𝑃𝐶𝑎𝑝𝑝𝑖

𝑚𝑎𝑥𝑁𝑃𝑝𝑖𝑔    ∀𝑝, 𝑖, 𝑔 (3) 

where PRpig is the production capacity of plant p producing hydrogen form i in district g, PCapmin
pi is the 

minimum capacity of plant p producing hydrogen form i, PCapmax
pi is the maximum capacity of plant p 

producing hydrogen form i and NPpig  is the number of plant p producing hydrogen form i in district g. 

2.2.2 Transportation constraints 

Eq(4) indicates the amount of hydrogen transported between districts should not violate the allowable limits. 

Eq(5) shows a district should not be exporting and importing hydrogen to/from the same district at a time. 

𝑄𝑖𝑙
𝑚𝑖𝑛𝑋𝑖𝑙𝑔𝑔′ ≤ 𝑄𝑖𝑙𝑔𝑔′ ≤ 𝑄𝑖𝑙

𝑚𝑎𝑥𝑋𝑖𝑙𝑔𝑔′     ∀𝑖, 𝑙, 𝑔, 𝑔′;   𝑔 ≠ 𝑔′ (4) 

𝑋𝑖𝑙𝑔𝑔′ + 𝑋𝑖𝑙𝑔′𝑔 ≤ 1     ∀𝑖, 𝑙, 𝑔, 𝑔′;   𝑔 ≠ 𝑔′ (5) 
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where Qmin
il
 is the minimum amount of hydrogen form i transported via transportation mode l, Qmax

il is the 

maximum amount of hydrogen form i transported via transportation mode l, Xilgg’ is a binary determinant for the 

transportation of hydrogen form i via transportation mode l from district g to district g’, and Xilg’g is a binary 

determinant for the  transportation of hydrogen form i via transportation mode l from district g’ to district g.  

2.2.3 Storage constraints 

Eq(6) shows the storage requirement of product and Eq(7) indicates the hydrogen product can be stored in 

tanks of different capacities. Eq(8) depicts the hydrogen stored in tanks should be within the allowable limits. 

𝑆𝑇𝑖𝑔 = 𝛽(𝐷𝑇𝑖𝑔 + 𝐻2𝑖𝑔
𝑡𝑜𝑒)    ∀𝑖, 𝑔 (6) 

𝑆𝑇𝑖𝑔 = ∑ 𝑆𝐼𝑠𝑖𝑔𝑠     ∀𝑖, 𝑔  (7) 

𝑆𝐶𝑎𝑝𝑠𝑖
𝑚𝑖𝑛𝑁𝑆𝑠𝑖𝑔 ≤ 𝑆𝐼𝑠𝑖𝑔 ≤ 𝑆𝐶𝑎𝑝𝑠𝑖

𝑚𝑎𝑥𝑁𝑆𝑠𝑖𝑔   ∀𝑖, 𝑔  (8) 

where STig is the total inventory of product i in district g, β is the storage holding period, SCapmin
si is the 

minimum storage capacity of hydrogen form i in storage unit s, SCapmax
si is the maximum storage capacity of 

hydrogen form i in storage unit s, SIsig is the hydrogen stored in form i in storage unit s in district g and NSsig is 

the number of storage unit s storing hydrogen form i in district g. 

2.2.4 PV system 

The electricity produced from solar radiation is given in Eq(9). Eq(10) indicates the electricity generated from 

solar radiation can be used to fulfil the local electricity demand or converted to H2. Eq(11) depicts the total 

electricity demand in a district can be satisfied by electricity produced from solar radiation and hydrogen. 

𝐸𝑔
𝑆 = 𝑅𝑔

𝑆 𝑃𝑉𝑔
𝐴 𝑃𝑉𝐸𝐹𝐹  𝐼𝑁𝑉𝐸𝐹𝐹    ∀𝑔 (9) 

𝐸𝑔
𝑆 = 𝐸𝐷𝑔 + 𝐸𝑔

𝑡𝑜𝐻2    ∀𝑔 (10) 

𝐷𝐸𝑇𝑔 = 𝐸𝐷𝑔 + 𝐸𝑔
𝑓𝑟𝑜𝑚𝐻2

    ∀𝑔 (11) 

where ES
g denotes the electricity produced from solar radiation in district g, RS

g is the solar radiation in district 

g, PVA
g is the area of PV panel in district g, PVEFF is the efficiency of PV panel, INVEFF is the efficiency of 

inverter, ED
g is the amount of electricity transmitted to the demand site in district g, EtoH2

g is 

the amount of electricity converted to H2 through electrolysis in district g, DETg is the total electricity demand in 

district g, and EfromH2
g is the amount of electricity produced from H2 through fuel cell in district g. 

2.2.5 Fuel cell system and electrolysis plant 

The amount of electricity converted from H2 is given by Eq(12). Eq(13) computes the yield of hydrogen in 

electrolysis process. The sum of hydrogen produced from each type of electrolysis plant should balance the 

total amount of hydrogen generated from electricity as illustrated in Eq(14). Eq(15) shows the production 

capacity of electrolysis plant is bounded by its lower and upper production limits. 

𝐸𝑔
𝑓𝑟𝑜𝑚𝐻2

= ∑ 𝐻2𝑖𝑔
𝑡𝑜𝐸  𝑌𝐻2𝑡𝑜𝐸  𝐼𝑁𝑉𝐸𝐹𝐹  𝑖    ∀𝑔  (12) 

∑ 𝐻2𝑖𝑔
𝑓𝑟𝑜𝑚𝑒

= 𝐸𝑔
𝑡𝑜𝐻2 𝑌𝐸𝑡𝑜𝐻2    ∀𝑔𝑖   (13) 

𝐻2𝑖𝑔
𝑓𝑟𝑜𝑚𝑒

= ∑ 𝑃𝐸𝑒𝑖𝑔𝑒     ∀𝑖, 𝑔  (14) 

𝐸𝐶𝑎𝑝𝑒𝑖
𝑚𝑖𝑛𝑁𝐸𝑒𝑖𝑔 ≤ 𝑃𝐸𝑒𝑖𝑔 ≤ 𝐸𝐶𝑎𝑝𝑒𝑖

𝑚𝑎𝑥𝑁𝐸𝑒𝑖𝑔    ∀𝑒, 𝑖, 𝑔 (15) 

where H2toE
ig is the amount of hydrogen form i converted to electricity in district g and YH2toE is yield of 

electricity per unit hydrogen reacted in fuel cell, YEtoH2 is yield of H2 per unit electricity consumed and PEeig is 

production rate of hydrogen form i at electrolysis plant e in district g, ECapmin
ei is the minimum capacity of 

electrolysis plant e producing hydrogen form i, ECapmax
ei is maximum capacity of electrolysis plant e producing 

hydrogen form i and NEeig is the number of electrolysis plant e producing hydrogen form i in district g. 
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Eq(16) and (17) indicate that the capacity of inverter is dependent on the amount electricity from PV panel or 

fuel cell, whichever is greater. Meanwhile, the capacity of fuel cell is dependent on the electricity throughput as 

shown in Eq(18). 

𝐼𝑁𝑉𝑔
𝐶𝐴𝑃 ≥

𝐸𝑔
𝑆

𝐻𝑆 𝐼𝑁𝑉𝐸𝐹𝐹
    ∀𝑔  (16) 

𝐼𝑁𝑉𝑔
𝐶𝐴𝑃 ≥

𝐸𝑔
𝑓𝑟𝑜𝑚𝐻2

𝐻𝑆 𝐼𝑁𝑉𝐸𝐹𝐹
    ∀𝑔  (17) 

𝐹𝐶𝑔
𝐶𝐴𝑃 ≥

𝐸𝑔
𝑓𝑟𝑜𝑚𝐻2

𝐻𝑆 𝐹𝐶𝐸𝐹𝐹𝐼𝑁𝑉𝐸𝐹𝐹     ∀𝑔  (18) 

where INVCAP
g is inverter capacity in district g, HS is peak sun hours, FCCAP

g is fuel cell capacity in district g. 

2.2.6 Objective function 

The objective function of this model is to minimize the total daily cost of HSC which is defined in Eq(19). 

Eq(20) and (21) represents the mathematical expression for facility capital cost and operating cost. 

𝑇𝐷𝐶 =
𝐹𝐶𝐶+𝑇𝐶𝐶

𝛼∙𝐶𝐶𝐹
+ 𝐹𝑂𝐶 + 𝑇𝑂𝐶  (19) 

𝐹𝐶𝐶 = ∑ [∑ (∑ 𝑃𝐶𝐶𝑝𝑖𝑁𝑃𝑝𝑖𝑔 + ∑ 𝑆𝐶𝐶𝑠𝑖𝑁𝑆𝑠𝑖𝑔𝑠 + ∑ 𝐸𝐶𝐶𝑒𝑖𝑁𝐸𝑒𝑖𝑔𝑒𝑝 ) + 𝑃𝑉𝑔
𝐴 𝑃𝑉𝐸𝐹𝐹𝑃𝑉𝐶𝐶 + 𝐹𝐶𝑔

𝐶𝐴𝑃 𝐹𝐶𝐶𝐶𝑖 +𝑔

𝐼𝑁𝑉𝑔
𝐶𝐴𝑃 𝐼𝑁𝑉𝐶𝐶]  

(20) 

𝐹𝑂𝐶 = ∑ [∑ (∑ 𝑈𝑃𝐶𝑝𝑖𝑃𝑅𝑝𝑖𝑔 + ∑ 𝑈𝑆𝐶𝑠𝑖𝑆𝐼𝑠𝑖𝑔𝑠 + ∑ 𝑈𝐸𝐶𝑒𝑖𝑃𝐸𝑒𝑖𝑔𝑒𝑝 ) + 𝑃𝑉𝑔
𝐴 𝑃𝑉𝐸𝐹𝐹𝑃𝑉𝑈𝐶 + 𝐹𝐶𝑔

𝐶𝐴𝑃 𝐹𝐶𝑈𝐶𝑖 ]𝑔   (21) 

where TDC is total daily cost, FCC is facility capital cost, TCC is transportation capital cost, FOC is facility 

operating cost, TOC is transportation operating cost, α is network operating period, CCF is capital change 

factor, PCCpi is capital cost of production technology p producing hydrogen form i, SCCsi is capital cost of 

storage unit s for hydrogen form i, ECCei is capital cost of electrolysis plant e producing hydrogen form i, 

PVCC is unit capital cost of PV system, FCCC is unit capital cost of fuel cell, INVCC is unit capital cost of 

inverter, UPCpi is unit production cost of production plant p producing hydrogen form i, USCsi is unit storage 

cost of storage unit s for hydrogen form i, UECei is unit electrolysis cost for electrolysis plant e producing 

hydrogen form i, PVUC is unit operating cost of PV system, FCUC is unit operating cost of fuel cell system. 

Eq. (22) and (23) represent the mathematical expressions for transportation capital cost: 

𝑁𝑇𝑈𝑔𝑟𝑖𝑑𝑖𝑙𝑔𝑔′ = [
𝑄𝑖𝑙𝑔𝑔′

𝑇𝑀𝐴𝑙𝑇𝐶𝑎𝑝𝑖𝑙
(

2𝐴𝐷𝑔𝑔′

𝑆𝑃𝑙
+ 𝐿𝑈𝑇𝑙)]      ∀𝑖, 𝑙, 𝑔, 𝑔′  (22) 

𝑇𝐶𝐶 = ∑ 𝑁𝑇𝑈𝑔𝑟𝑖𝑑𝑖𝑙𝑔𝑔′𝑖𝑙𝑔𝑔′ TMCil  (23) 

where NTUgridilgg’ is the number of transportation unit carrying hydrogen form i via transportation mode l from 

district g to district g’, TMAl is availability of transportation mode l, TCapil is capacity of transportation mode l 

carrying hydrogen form i, ADgg’ is the average distance between district g and g’, SPl is the mean speed of 

transportation mode l, LUTl is the load and unload time for transportation mode l, and TMCil is the cost of 

establishing transportation mode l transporting hydrogen form i.  

Eq (24) to (28) show the calculations for transportation operating cost: 

𝐹𝐶 = ∑ 𝐹𝑃𝑙𝑖𝑙𝑔𝑔′ (
2𝐴𝐷𝑔𝑔′𝑄𝑖𝑙𝑔𝑔′

𝐹𝐸𝑙𝑇𝐶𝑎𝑝𝑖𝑙
)         (24) 

𝐿𝐶 = ∑ 𝐷𝑊𝑙𝑖𝑙𝑔𝑔′ [
𝑄𝑖𝑙𝑔𝑔

𝑇𝐶𝑎𝑝𝑖𝑙
(

2𝐴𝐷𝑔𝑔
′

𝑆𝑃𝑙
+ 𝐿𝑈𝑇𝑙)]    (25) 

𝑀𝐶 = ∑ 𝑀𝐸𝑙𝑖𝑙𝑔𝑔′ (
2𝐴𝐷𝑔𝑔′𝑄𝑖𝑙𝑔𝑔′

𝑇𝐶𝑎𝑝𝑖𝑙
)    (26) 

𝐺𝐶 = ∑ 𝐺𝐸𝑙𝑖𝑙𝑔𝑔′ [
𝑄𝑖𝑙𝑔𝑔

′

𝑇𝑀𝐴𝑙𝑇𝐶𝑎𝑝𝑖𝑙
(

2𝐴𝐷𝑔𝑔
′

𝑆𝑃𝑙
+ 𝐿𝑈𝑇𝑙)]    (27) 

𝑇𝑂𝐶 = 𝐹𝐶 + 𝐿𝐶 + 𝑀𝐶 + 𝐺𝐶 (28) 
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where FC is fuel cost, LC is labour cost, MC is maintenance cost, GC is general cost, FPl is the fuel price of 

transportation mode l, FEl is the fuel economy for transportation mode l, DWl is the driver wage of 

transportation mode l, MEl is the maintenance expenses for transportation mode l, GEl is the general 

expenses for transportation mode l.  

3. Case study 

In this work, the optimization of HSC is performed on Johor region which is geographically divided into 10 

districts. Table 1 shows the availability of energy resources and energy demand of the districts, where the fuel 

and electricity of each district are estimated using its population as illustrated in Eq(29) and (30). The optimal 

HSC configuration determined from the optimization result is illustrated in Figure 2. 

𝐸𝑙𝑒𝑐𝑡𝑟𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 =  
𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 

𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
       (29) 

𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑓𝑢𝑒𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛 𝐽𝑜ℎ𝑜𝑟 ×𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐽𝑜ℎ𝑜𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  ×

                                                                   𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 × 𝐹𝑢𝑒𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑦 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛     
(30) 

The vehicle number in Johor and the average distance travelled is obtained from Shabadin et al. (2014), the 

national electricity demand is obtained from Malaysia Energy Commission (2018), the national and regional 

population is retrieved from Department of Statistics Malaysia (2010), and the fuel economy of fuel cell vehicle 

is assumed to be 0.76 kg/100 km, the same as Toyota Mirai (Toyota Motor Europe, 2015). For solar system, 

the information for PV panel and inverter is obtained from Elshurafa et al. (2019), the average solar radiation 

in the districts is extracted from Meteoblue (2019) and peak sun hours is assumed to be 4 hours per day. The 

capital and operating cost of fuel cell is 434 USD/kW and 0.05 USD/kW·d (Steward et al., 2009). Information 

for production, storage, transportation and capital change factor is adapted from Almaraz et al (2014). 

Table 1: Transportation fuel and electricity demand of the districts 

No. District  Solar radiation 

(kWh/d) 

EFB supply 

(kg/d) 

PKS supply 

(kg/d) 

Fuel demand  

(kg H2/d) 

Electricity demand 

(kWh/d) 

1 Batu Pahat 4.29 424,110  96,389   48,979   4,917,749  

2 Johor Bahru 4.89 29,589  6,725   162,604   16,325,378  

3 Kluang 4.29 1,692,493  384,658   35,146   3,528,477  

4 Kota Tinggi 5.03 1,147,068  260,697   22,894   2,298,250  

5 Mersing 4.51 230,538  52,395   8,415   844,640  

6 Muar 4.35 345,205  78,456   29,140   2,924,780  

7 Pontian  4.89 24,658  5,604   18,280   1,834,670  

8 Segamat 4.58 1,010,959  229,763   22,311   2,239,039  

9 Ledang 4.55 36,986  8,406   16,082   1,613,831  

10 Kulaijaya 4.89 355,068  80,697   29,901   3,001,464  

 
Figure 2: Optimal HSC configuration    

 

The optimization model in GAMS was run in Windows 10 Pro 64-bit operating system with Intel(R) Core(TM)  

i5-6200U CPU @ 2.30GHz 2.40GHz and 8GB installed RAM. The CPU time taken to solve the model with 51 

89



variables was 43s. Through GAMS optimization, the optimal cost of HSC is determined to be 3,644,800 

USD/d. From Figure 2, it can be observed that all districts will employ PV system and 3 of the districts will be 

having electrolysis plant. No gasification plant is used meaning that the all hydrogen will be produced from 

electrolysis process. By having higher intensity of solar radiation and lower energy demand, Kota Tinggi could 

potentially be a large exporter of hydrogen followed by Pontian, while other districts will be the hydrogen 

importer. Fuel cell system is only found in Johor Bahru, which is the district with the greatest energy demand.  

4. Conclusions 

The model proposed in this paper extends the use of hydrogen to fulfil the fuel and electricity demand, and the 

interconversion between hydrogen and electricity is being modelled. This work is significant in exploring the 

roles of hydrogen in future energy system, and future study should consider the spatial planning of facilities.  
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