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Due to the ability to produce electricity on demand, biogas plants show a high potential to avoid grid overload 

caused by short-term feed-in fluctuations of photovoltaic (PV) power plants at the distribution level of the 

electricity grid. To optimise the balancing approach, the present research is focused on the development of a 

control system for a privately operated, agricultural biogas plant considering high feed-in gradients of 

surrounding PV power plants. A ground-mounted PV power plant is modelled using Matlab®/ Simulink™ to 

forecast the PV power feed-in in high resolution. Among various modelling approaches the five-parameter single 

diode 𝑅𝑝-model is selected as the central model for a PV cell. To analyse the behaviour of the DC-output of a 

PV array considering shading effects caused by cloud drift the model is modified from a module to an array 

system. The computed DC-output of the PV plant is compared in terms of accuracy to the rated value of 

manufacturer data and analysed in terms of computation time to be integrated within a short time horizon as 

input data in the control system. 

1. Introduction 

The rising costs of fossil fuels and growing need to reduce greenhouse gas (GHG) emissions increase the 

importance of renewable energy technologies (Valencia et al., 2018). Shortly, the installed power generation 

capacities of renewable energies will by far exceed the conventional energy production. Already in 2017, 

216 TWh (36 % of the gross electricity consumption in Germany) was produced from renewable energy sources 

(Bundesministerium für Wirtschaft und Energie (BMWi), 2018). By 2030, the ratio of fossil fuel- and renewable-

based electricity production is expected to be inverted (Heinrich Böll Foundation, 2018). The provided power of 

wind and solar energy are, however, continuously changing due to local environmental variations such as solar 

irradiance, wind strength and temperature. Due to the rising amount of variable renewable electricity generators, 

electricity generation will arise primarily according to availability. To ensure electricity grid stability in future, 

advanced energy system management is required (Stark et al, 2017). The resulting incongruence between 

generation and demand will cause periods with a lack or a surplus of electricity in the grid. During 

underproduction, additional electricity production is required, while during periods of overproduction the surplus 

electricity has to be stored. Therefore, new solutions in the fields of load management and new storage 

technologies as well as grid expansion have to be considered (Liu et al., 2018). The electricity generation from 

biomass plants (Stark et al., 2018), especially from biogas plants is independent of weather conditions, hence, 

allows a controllable (Häring et al., 2017) and demand-driven energy provision (Dotzauer et al., 2018).  

2. Methodology 

2.1 Biogas Plant and PV Power Plant at one Grid Connection Point 

The focus of the present research is on balancing the intermittent power supply from solar energy with the 

controllable power generation of a biogas plant at one grid connection point for an optimal transformer loading 

at the medium voltage distribution grid level, as shown in Figure 1. During time periods of high solar irradiation 

and a generation of electricity according to EPEX SPOT SE electricity prices of decentral biogas and PV power 
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plants at the maximum level, the capacity of a grid connection point in the rural medium voltage distribution grid 

is not sufficient for the overall feed-in (see Figure 1: Initial Situation). With the development of a biogas plant 

control system with control intervals in a range of seconds (s) short-term, daily occurring grid overload in the 

rural distribution grid can be avoided which allows an increase of the total energy feed-in of the biogas and PV 

power plants to the electricity grid (see Figure 1: Optimised Situation). 

 

 

Figure 1: Power Generation of the Biogas Power Plant with a Predictive Control System. 

2.2 Demonstration biogas plant 

In this context, the privately operated, agricultural biogas plant Zellerfeld in Bavaria, Germany, is used to analyse 

the behaviour of a system consisting of a biogas plant and a PV power plant (Figure 2). 

 

 

Figure 2: Overview of Biogas and PV Power Plants at Zellerfeld. 

The biogas plant has an installed power of 1,438 kWel with two installed combined heat and power (CHP) units 

(CHP 1: 549 kWel, CHP 2: 889 kWel) resulting in an overall rated power of 700…850 kWel. It shares the grid 

connection point with seven ground mounted PV power plants consisting of several PV modules connected 

either in series (Nser) or parallel (Npar) with a maximum peak feed-in power of 7,000 kWel,p limited by converters 

to 5,000 kWel (see Table 1). 

Table 1: Number of Modules at PV Power Plant Zellerfeld 

 Egling 1  Egling 2  Egling 3  Egling 4  Egling 5  Egling 6  Engelschall 

Nser  18  18  18  18  22  22  24  

Npar  146  146  116  90  107  87  132  

Inverter 4  1  2  1  1  1  1  

Modules 10,512  2,628  4,176  1,620  2,354  1,914  3,168  

Adding the maximum PV power plant feed-in to the total feed-in power of the biogas plant, the peak load at the 

grid connection point is 6,438 kWel. The circuit breaker, installed at the grid connection point, however, is 

activated with a reaction time in the range of milliseconds when 5,000 kWel are exceeded. Since an expansion 

of the grid connection point capacity cannot be realised, it is necessary to take a forecast of the feed-in of the 

PV system into account for the appropriate scheduling of the biogas plant. To determine the feed-in behaviour 

of a PV power plant, the power provision of a plant with a 1.5 MWel transformer is analysed. The average feed-

in gradient on a sunny day without cloud drift in Bavaria is about 1.6 kWel/s. On a very cloudy and windy day 
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with fast changing weather conditions, the average feed-in gradient is about 65 kWel/s. For the considered 

maximum PV power feed-in with transformers of an installed power of 7,000 kWel a feed-in gradient of 

approximately 300 kWel/s is obtained (Bär et al., 2018a). 

Solar predictions are available with a resolution of 15 min in a range of about 5 km (Sirch et al., 2017). According 

to the feed-in gradients and spatial size of the considered PV power plant, a prediction with a temporal resolution 

of a few minutes and spatial resolution of at least 1 km is required for an adequate reaction of the CHP units of 

the biogas plant. Available cloud data, cloud prediction and the spatial-temporal resolution of the resulting solar 

radiation prediction have to be increased significantly. To be able to perform a systematic validation of cloud 

detection and prediction, the radiation and resulting PV feed-in forecast is performed using a measuring system, 

consisting of cloud cameras and radiation sensors. In addition to the measurement system, standard forecasting 

methods as well as high-resolution satellite data will be considered. 

Besides the feed-in gradient of the PV power plant, a significant system parameter is represented by the 

dynamic behaviour of the CHP units. A complete switch-off of the CHP units takes approximately about 175 s, 

which means a switch-off gradient of 3.1 kWel/s for CHP 1 unit and 5.1 kWel/s for the CHP 2 unit. Operation 

monitoring as well as feedback from experts revealed that the current state-of-the-art allows for a switch-off 

gradient of about 10 kWel/s. An optimum total switch-off process of the CHP units has a duration of 90 s in the 

biogas plant Zellerfeld, which is too long to react appropriately to the feed-in gradients of the PV power plant. In 

order to react adequately to the feed-in performance of a PV system, a time delay of approximately 30 s (feed-

in gradient of the PV power plant) has to be considered (Bär et al., 2018b). 

2.3 Control system for the combination of a biogas and a PV power plant at one grid connection point 

For an efficient control of the power supply within the system, the operation management of the control system 

has to fulfil several steps to respond to the PV power plant by providing the power from the CHP units of the 

biogas plants in the correct amount at the expected time t as shown in Figure 3. The overall reaction time 𝑇𝑐𝑡 is 

critical, as the control system needs to interface with the grid control point in real time. 

 

 

Figure 3: Control System Management Process. 

The first step of the control system management process is to forecast the solar irradiation in order to predict 

the PV array power feed-in (Solar Irradiation Data) and the loads of the electricity grid (Grid Data), which takes 

the time period 𝑡𝑐𝑓.(Figure 3) A Modbus TCP is supplying measurement data of the cloud drift and distribution 

grid from a monitoring system. These data are used to simulate the electricity grid (Grid Situation) and the PV 

power plant feed-in (PV Feed-In), which takes the computational time 𝑡𝑐𝑠. The core of the project is the 

development, implementation and verification of a mathematical optimisation algorithm (Optimisation Over All 

System) to develop CHP unit schedules considering the electricity grid situation (Bär et al., 2018b). The 

optimisation should lead to a maximisation of the turnover of the biogas plant operator while demand-oriented 

energy supply within the optimisation time 𝑡𝑐𝑜. The electricity prices of EPEX SPOT SE (Electricity Price) are 

taken into account as essential control signals and are read in daily or hourly via a web interface. The timetables 

created in this way are calculated within the optimisation time 𝑡𝑐𝑜 and, in turn, transmitted via a VPN connection 

to the CHP unit control (CHP Unit Control), which then regulates the feed-in of the CHPs in the period of time 𝑡𝑟𝑐. 

At the same time, measured data from the CHP (CHP unit Feed-In) and the biogas plant are sent back to the 

optimisation unit via Modbus TCP. The engine- and generator-caused CHP unit reaction time 𝑡𝑟𝑡 has to be taken 

into account as well. The overall reaction time 𝑇𝑐𝑡 for the control system process can, therefore, be defined as  

𝑇𝑐𝑡 =  𝑡𝑐𝑓 +  𝑡𝑐𝑠 +  𝑡𝑐𝑜 +  𝑡𝑟𝑐 +  𝑡𝑟𝑡 (1) 

To forecast the PV power plant feed-in, a model considering partial shading effects, weather and cloud drift 

forecasts with respect to small-scale spatiotemporal variations at very short forecast horizons has to be 
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developed. For demand-driven power generation, in this project, even larger array sizes have to be considered 

in a high resolution of a module in order to take partial shading effects into account. Partial shading is caused 

by dust, dirt, snowfall, cloud drift, nearby trees or tall structures like buildings or chimneys. This affects the 

Maximum Power Point Tracking (MPPT) causing efficiency losses of the PV power plant system by reducing 

the maximum DC-output power of a PV power plant causing multiple peaks in the current-voltage curve (𝐼 − 𝑉 

curve). To determine the DC output current of a module, the 𝐼 − 𝑉 curve is calculated, applying simulations in 

Matlab®/Simulink™ (The MathWorks, 2019) according to the ideal single diode model, the single diode 𝑅𝑠-

model, the five-parameter single diode 𝑅𝑝-model and the two diode model (Quaschning, 2016) for three different 

types of cells, which are in operation in the PV power plant in Zellerfeld.  

These four established modelling approaches are validated with the datasheets of the manufacturers (see 

Table 2) and measured data in order to determine the accuracy and computational time. 

To model the PV power plant, the following assumptions are considered: (i) The cells are identical and are 

modelled in ideal condition, i.e. without any electrical losses. (ii) The module temperatures are taken from an 

installed thermal sensor to consider the effect of local wind speed and ambient temperature. 

Table 2: Photovoltaic Modules Data. 

 Atersa A-275P BP 3230N Moser Baer 

Peak power (W) 275 230 230 

Number of cells in module Ns 72 60 60 

Current at maximum power point Impp (A) 7.60 7.90 7.80 

Voltage at maximum power point Vmpp (V) 36.19 29.1 29.50 

Short circuit current Isc (A) 8.08 8.40 8.34 

Open circuit voltage Voc (V) 45.23 36.7 37.25 

Thermal coefficient of Isc (ki) (%/°C) 0.05 0.105 0.05 

Thermal coefficient of Voc (kv) (%/°C) -0.35 -0.36 -0.35 

3. Results 

Comparing the simulation results of the maximum power output in Matlab® 

Version 2018a (The MathWorks, 2019) with the manufacturers’ datasheets, the single diode 𝑅𝑆-model shows 

the highest accuracy followed by the five-parameter single diode 𝑅𝑝-model, the two diode model and the ideal 

diode model (see Table 3). 

Table 3: Comparison of Computed DC Output to Rated Value of Manufacturer’s Data (in W) of PV Modules 

and Deviation from Data Sheet. 

 Atersa A-275P  BP 3230N  Moser Baer 

Ideal diode model 296 (+7.7 %) 249 (+8.2 %) 251 (+9.3 %) 

Single diode Rs-model 274 (-0.3 %) 229 (-0.6 %) 230 (+0.1 %) 

Single diode Rp-model 273 (-0.9 %) 228 (-1.1 %) 229 (-0.3 %) 

Two diode model 280 (+1.9 %) 234 (+1.8 %) 236 (+2.5 %) 

Table 4: Computation Time (s) in Matlab® for a PV Module. 

 Atersa A-275P BP 3230N Moser Baer 

Ideal diode model 0.19 0.19 0.19 

Single diode Rs-model 0.24 0.23 0.24 

Single diode Rp-model 0.25 (Simulink™: 8.11) 0.24 (Simulink™: 6.72) 0.24 (Simulink™: 7.44) 

Two-diode model 0.26 0.25 0.25 

 

(a)     (b)  

Figure 4: Computation Time in Simulink™ (a) and in Matlab® (b). 
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Table 4 shows the computation time for the four different modelling approaches in Matlab® and Simulink™. The 

ideal diode model has the shortest simulation time in Matlab® due to its simple structure and the lowest number 

of parameters, while the two-diode model has the longest simulation time due to the inclusion of two diodes and 

the complex iteration to calculate the values for 𝑅𝑠 and 𝑅𝑠ℎ. By comparing the model accuracy for maximum 

power of a module and the total computational time, the 𝑅𝑝 -model and the 𝑅𝑠-model show similar results (see 

Table 3 and Table 4). As the 𝑅𝑠 -model is not considering the effect of recombination losses of a PV cell, the 

five-parameter single diode 𝑅𝑝-model is selected for the control system, representing a compromise of accuracy 

and computation time. According to Table 4, the simulation of the five-parameter 𝑅𝑝-model is almost 40 times 

faster in Matlab® compared to Simulink™. In the following the five-parameter single diode 𝑅𝑝-model is 

presented in detail. 

To determine the 𝐼 − 𝑉 curve of the five-parameter single diode 𝑅𝑝-model, the photovoltaic current 𝐼𝑝ℎ as well 

as the diode current 𝐼𝐷 and the shunt current 𝐼𝑠ℎ have to be calculated, considering the electron 

charge 𝑞 =1.60217646x10−19 C, the Boltzmann constant 𝑘=1.3806503x10−23 J/K, the PV cell temperature 𝑇, 

the diode quality factor 𝑛, the series resistance 𝑅𝑠, the shunt resistance 𝑅𝑠ℎ and 

the diode saturation current 𝐼0 (Habbati et al., 2014). The current 𝐼 to a given 𝑉 in the Interval 𝑚 ∈ [𝑚, 𝑚+1] can 

be calculated with the iteration method 

𝐼(𝑚 + 1) =  𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ = 𝐼𝑝ℎ − 𝐼0 ∙ (𝑒
𝑞∙(𝑉+𝐼(𝑚)∙𝑅𝑠)

𝑛∙𝑘∙𝑇 − 1) −
𝑉 + 𝐼(𝑚) ∙ 𝑅𝑠

𝑅𝑠ℎ
 (2) 

The photovoltaic current 𝐼𝑝ℎ depends on the solar irradiance 𝐺, the cell temperature 𝑇, the irradiance 𝐺𝑆𝑇𝐶, the 

temperature 𝑇𝑆𝑇𝐶, the photovoltaic current 𝐼𝑝ℎ,𝑆𝑇𝐶  at standard test condition (STC) and the temperature 

coefficient for short circuit current Ki, i.e. 

𝐼𝑝ℎ =
𝐺

𝐺𝑆𝑇𝐶
∙(𝐼𝑝ℎ,𝑆𝑇𝐶 + 𝐾𝑖 ∙ (𝑇 − 𝑇𝑆𝑇𝐶)) (3) 

To consider the temperature for the calculation of the diode saturation current 𝐼0, the variation of the temperature 

coefficient 𝐾𝑣 for open circuit voltage 𝑉𝑂𝐶, the temperature difference 𝛥𝑇 (𝑇 − 𝑇𝑟𝑒𝑓), the 

short circuit  current 𝐼𝑠𝑐,𝑆𝑇𝐶 and the open circuit voltage at STC 𝑉𝑂𝐶,𝑆𝑇𝐶  have to be taken into account which gives  

𝐼0 =
𝐼𝑠𝑐,𝑆𝑇𝐶 + 𝐾𝑖 ∙ ∆𝑇

𝑒
𝑉𝑂𝐶,𝑆𝑇𝐶+𝐾𝑣∙∆𝑇

𝑛∙𝑁𝑠∙𝑉𝑇 − 1

 (4) 

Depending on the PV cell technology, the diode ideality factor n can be assumed as 𝑛 = 1.2 (Habbati, 2014). 

The modified diode ideality factor 𝑎 = 𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑇 varies with the number of cells connected in series 𝑁𝑠 and the 

thermal voltage 𝑉𝑇 =
𝑘∗𝑇

𝑞
. Taking into account the current 𝐼𝑚𝑝𝑝 and voltage 𝑉𝑚𝑝𝑝 at the maximum power point, 

the series resistance  

𝑅𝑠 =
𝑉𝑚𝑝𝑝

𝐼𝑚𝑝𝑝
−

𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑇 ∙ 𝑅𝑠ℎ

𝐼0 ∙ 𝑅𝑠ℎ ∙ 𝑒
𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝∙𝑅𝑠

𝑛∙𝑁𝑠∙𝑉𝑇 + 𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑇

 (5) 

and shunt resistance 

𝑅𝑠ℎ =
𝑉𝑚𝑝𝑝 + 𝐼𝑚𝑝𝑝 ∙ 𝑅𝑠

𝐼𝑝ℎ − 𝐼𝑚𝑝𝑝 − 𝐼0 ∙ (𝑒
𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝∙𝑅𝑠

𝑛∙𝑁𝑠∙𝑉𝑇 ) − 1

 
(6) 

can be calculated. Due to the very low series resistance and high shunt resistance, it is commonly assumed 

that 𝐼𝑝ℎ ≈  𝐼𝑆𝐶.With this approximation, the photovoltaic current 𝐼𝑝ℎ can be calculated by 𝐼𝑝ℎ=
𝑅𝑠ℎ+𝑅𝑠

𝑅𝑠ℎ
∙ 𝐼𝑠𝑐. As the 

series resistance 𝑅𝑠, shunt resistance 𝑅𝑠ℎ and photovoltaic current 𝐼𝑝ℎ are mutually impacted by each other, 

their values are computed with the help of the Newton Raphson iteration method (Butenko et al., 2014). To 

investigate the shading effects for the overall plant, each module shall be taken into account with different 

irradiation and temperature values during simulation time. To build the 𝐼 − 𝑉 curve of a whole PV array under 

shading conditions, several PV modules (denoted by number 𝑁) have to be connected either in series (i.e. 𝑁𝑠𝑒𝑟  ) 

or in parallel (i.e. 𝑁𝑝𝑎𝑟) (Quaschning, 2016). In a series circuit of cells 𝑁𝑠𝑒𝑟, the current 𝐼𝑠𝑒𝑟 =  𝐼𝑠𝑒𝑟,1 =  𝐼𝑠𝑒𝑟,2 =

⋯ =  𝐼𝑠𝑒𝑟,𝑁𝑠𝑒𝑟
  is identical by all cells 𝑁𝑠𝑒𝑟, the cell voltages 𝑈(𝐼)𝑠𝑒𝑟,𝑢𝑛𝑠ℎ𝑎𝑑𝑒𝑑 + 𝑁𝑠𝑒𝑟 ∙  𝑈(𝐼)𝑠𝑒𝑟,𝑠ℎ𝑎𝑑𝑒𝑑 are summed 

up to the module voltage 𝑈(𝐼)𝑠𝑒𝑟. PV cells connected in parallel 𝑁𝑝𝑎𝑟, have all the same voltage 𝑈𝑝𝑎𝑟 =  𝑈𝑝𝑎𝑟,1 =

 𝑈𝑝𝑎𝑟,2 =  𝑈𝑝𝑎𝑟,3 = ⋯ =  𝑈𝑝𝑎𝑟,𝑁𝑝𝑎𝑟
. The cell currents of parallel cells are summed up to the total current 𝐼𝑝𝑎𝑟 =

∑ 𝐼𝑛𝑝𝑎𝑟

𝑁𝑝𝑎𝑟

𝑛𝑝𝑎𝑟=1 .  

To analyse the simulation time of a PV array under shading effects, a small PV power plant array with 

independent modules is modeled with the five-parameter single diode 𝑅𝑝-model. It is assumed that every 

module has its own bypass diode (Quaschning, 2016). The simulation in Matlab® takes about 0.25 s per module 
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and 0.88 s per PV array with 30 modules. A PV array with 30 modules takes ten times longer in Simulink™ then 

in Matlab® (see Figure 4). For a PV power plant consisting of 120 modules the simulation time is about 0.95 s 

in Matlab® and about 93 s in Simulink™. Simulating 120 modules in Matlab® is even 88 times faster than in 

Simulink™. 

The Matlab® simulation time for a PV array with the size of the ground mounted PV power plant at the biogas 

plant Zellerfeld with a maximum 10,512 modules takes about 0.91 s. 

4. Conclusions 

The developed PV array modelling and simulation represents the first step towards the optimum interactive 

operation of the different renewable energy suppliers to avoid short-term, daily occurring grid overload in rural 

distribution grids. After analysing four different available PV models, the five-parameter single diode 𝑅𝑝-model 

is selected, due to its accuracy and computation time compared to other available modelling approaches. The 

developed PV models of the existing PV power plant are used as a model set, i.e. as input data for the control 

system at the biogas plant Zellerfeld. The model coded in Matlab® can provide an accurate electrical DC output 

for different types of PV modules checked against the nominal value of the manufacturer’s data. The PV array 

simulation leads to a maximum time 𝑡𝑐𝑠 of 0.91 s under shading conditions, ensuring a sufficient over all reaction 

time for the control system. 
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