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Crystallisation occurs in a large group of biotechnological, food, pharmaceutical and chemical processes. 
These processes are usually carried out in a batch or fed-batch mode. Traditionally, in sugar industry, the 
crystals quality is examined at the end of the process. Consequently, lack of real time measurement of sugar 
crystal size in a fed-batch vacuum evaporative crystalliser hinders the feedback control and optimisation of the 
crystallisation process. A mathematical model can be used for online estimation of the sugar crystal size. 
Unfortunately, the existing sugar crystallisation models are not in the form suitable for online implementation. 
Therefore, based on these existing models and seven process variables namely temperature (T), vacuum 
pressure (Pvac), feed flowrate (Ff), steam flowrate (Fs), crystallisation time (t), initial super-saturation (S0) and 
initial crystal size (L0), 128 data sets which were obtained from a 2-level factorial experimental design using 
MINITAB 14 were used to obtain a simple but online-implementable 6-input regression model for estimating 
crystal size. The initial crystal size (L0) was found to play no significant role within the range of the studied 
process conditions. The performance of the model was evaluated. The coefficient of determination, R2 was 
obtained as 0.994 and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R2 (~1.0) 
and the reasonably low MARE values are an indication that the proposed model can be used online for 
accurate estimation of sugar crystal size in a fed-batch vacuum evaporative crystalliser. 

1. Introduction 

Crystallisation is common in pharmaceutical, chemical and food processing industries (e.g. sugar refining). 
Industrially, these processes are carried out in a batch or fed-batch mode. In the sugar refining industry, the 
aim of sugar crystallisation is to separate sucrose from the syrup/molasses and to obtain quality sugar crystals 
(White et al, 1998; Anabel, 2001). The crystal quality, traditionally, is examined by crystal size distribution 
(CSD) at the end of the process. The CSD is quantified by the average crystal size of the distribution in the 
mean aperture (MA) and the width of the distribution in the coefficient of crystal size variation (CV) (Adrian, 
1983). The CSD of sugar products affect its acceptability in the market. “Customers’ acceptance requires 
individual crystals to be strong, non-aggregated, uniform in size and non-caking in the package. While for 
industrial purposes, reasonable size and size uniformity are desirable for filtering, washing and reacting with 
other chemicals” (Umo and Alabi, 2016). Large variation of CSD from market specification usually results in 
final product recycling which requires extra cost, energy and time. Thus, there is the need to determine the 
size of the sugar crystals real-time. 
Georgieva et al  (2003) stated that there are no techniques for the real time (online)  measurement of CSD in 
the sugar industries and that generally, data are limited to measurements made at the end of each batch by 
laboratory (sieve) analysis. As good as laboratory analysis may be, there is a challenge of deviation from the 
required values due to the fact that during the crystallisation process, samples taken from the pan (crystalliser) 
for analysis do not wholly represent the nature of the crystals at the time the analysis is completed. Although 
Schoolnees-Muir et al (2008) reported  that online measurement techniques are being developed for CSD 
during crystallisation processes, but none of these techniques have been commercially applied in the sugar 
industries (in South Africa). A review of these techniques is presented in the works of Meenesh et al (2012).  
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These new methods can provide certain information on particle shapes and sizes; however, they are limited 
by large time delay and data-processing requirements. Thus, there is an urgent need for better techniques to 
estimate crystal size and related properties online (Zhang et al, 2015; Presles et al, 2009). 
Sliskovic et al (2011) suggested that, to guarantee final product quality, process safety and efficiency, real 
time monitoring and control systems should be installed in the industrial plants. It is therefore paramount that a 
model for real-time estimation of sugar crystal size be developed to assist in addressing the issue of sugar 
crystal quality. Garcia (2001) developed a dynamic model to simulate the process units of a sugar factory. 
This dynamic model which is theoretical in nature consists of differential and algebraic equations which are 
difficult to solve. Georgieva et al (2003) compared the white, black and grey box modelling strategies which 
were applied to a fed-batch evaporative sugar crystallisation process. The grey box model was found to be 
most promising as it offers a compromise between the extensive efforts required in obtaining fully 
parameterized mechanistic models and the poor generalization of the data-based models. However, the 
model was considerably complex and, requires sophisticated software tools and computational power. Luis 
(2011) applied the classical model-based predictive control and the neural network model predictive control to 
a fed-batch crystallization process.  
Unfortunately, the control loops were characterized by strong nonlinearities, difficult dynamics and large delay. 
A common limitation of all the existing crystallisation process models is that they contain variables that are 
difficult to measure online. Thus, these models are not in the form which can be directly utilised as soft sensor 
for real time estimation of CSD in the sugar crystallisation unit. Hence, the main contribution of this study is 
the development of a regression model for online estimation of sugar crystal size. The developed model 
focuses only on the input parameters that can easily be measured online. Moreover, it eliminates the 
computational burden associated with the existing theoretical models while retaining their good generalization 
capability. 

2. Methods 

2.1 Modelling approach 

To estimate the crystal size (L) of sugar at any time (t) in a crystallisation unit, Anabel (2001) postulated that 
change in the size of the crystal is directly proportional to the time the sugar seed spent in the crystalliser and 
other factors that affect the change in the crystal size are lumped in the crystal growth rate (G). This 
relationship is expressed in Eq(1). For the statement of Anabel (2001) to hold, the crystals must have a 
Common History (CH). CH crystals are crystals nucleated at the same instant of time and then grown under 
the same temperature and super-saturation for the same length of time without any further nucleation or 
crystal breakage (Iswanto et al, 2007). Therefore, with proper process control in a fed-batch vacuum 
evaporative crystallizer, the factors that affect G are maintained at specified set-point values and 
consequently, G does not vary with time under these conditions. Consequently, by integrating Eq (1) between 
the limits (L, Lo) and (t, 0), the resulting equation is Eq(2) which was used in this work to obtain an online-
implementable sugar crystal size model. 
ݐ݀ܮ݀  =  (1) ܩ

2.2 Regression model for sugar crystal growth rate 

Several researchers including Wright and White (1969), Lauret et al (2000), Georgieva et al (2003) and 
Iswanto et al (2006) have developed models for predicting sugar crystal growth rate (G). The limitations in 
modelling sugar crystal growth rate are expounded in the work of Lauret et al (2000).The crystal growth 
phenomenon is complex because of the large number of interacting variables and the effects of some of these 
variables on the kinetics are nonlinear in nature and/or even unpredictable. Because of the difficulty in 
formulating the physical-based mathematical models, the empirical correlations have a long tradition 
(Georgieva et al, 2003). The challenge with the existing empirical models is due to the difficulty of estimating 
the parameters of the empirical expressions through nonlinear programming (NLP) optimization technique 
which gives poor results, in that the convergence to the optimum parameters are not guaranteed, especially 
when the optimized parameters are many (more than two). This motivated the choice of the growth rate model 
developed by Georgieva et al (2003) in this work, as given in Eq(3), 

ܮ = ܮ +  (2) ݐܩ

554



where Kg, R, T, S, ௦ܲ and ܸ are the kinetic constant, gas constant, temperature, super-saturation, purity of 
solution and the volume fraction of crystals, respectively. Unfortunately, volume fraction of crystal (Vc) and the 
purity of the solution (Psol) cannot easily be measured online. Thus, this model (Eq (3)) cannot be directly 
substituted into Eq(2) for online estimation of crystal size. Consequently, Eq(3) was used in this work to 
simulate growth rate in the design of experiment (DOE) to develop a new model with the capability for online 
estimation of linear growth rate as a function of temperature (T) and super-saturation (S) which can be easily 
measured and/or estimated online. The resulting regression model is in the form expressed in Eq(4), where ݔଵand ݔଶ are the independent variables (temperature and super-saturation); ܽ is the offset term (intercept); ܽଵ 
and ܽଶare the linear effects, ܽଷ and ܽସ are the quadratic effects while ܽଵଶ is the interaction effect. 

The DOE, based on response surface central composite method on Minitab 14 statistical software package, 
was used to fit the required data to Eq(4). Table 1 shows the range of data used in the DOE for the regression 
model development. The data are within the typical range of operating conditions of a fed-batch evaporative 
sugar crystallisation unit. 

Table 1: Low and high values of the input parameters for linear growth rate  

S/N Symbol Parameter Low High   
1 T Temperature (oC) 65 75 
2 S Super-saturation () 1.15 1.25 
3 Psol Purity of solution (%) 88 90 
4 Vc Volume fraction of sugar crystals () 0.4 0.5 
 
The model described in Eq(4) for online prediction of sugar crystal growth rate is a function of temperature and 
super-saturation. Although super-saturation is one of the difficult-to-measure parameters during sugar 
crystallisation process, the model developed by Umo and Alabi (2016) can be used for real time post-seeding 
super-saturation estimation. Their model is given in Eq(5), 

2.3 Regression model for sugar crystal size 

To derive the sugar crystal size model, the super-saturation model (Eq(5)) was combined with the proposed 
linear growth rate model (Eq(4)) and substituted into Eq(2). The model obtained is given in Eq(6). 

 
 

ܩ = ܭ exp  −57000ܴ(ܶ + 273)൨ (ܵ − 1)exp [−13.863(1 − ௦ܲ)](1 + 2 ܸ) (3) 

ܩ = ܽ + ܽଵݔଵ + ܽଶݔଶ + ܽଷݔଵଶ + ܽସݔଶଶ + ܽଵଶݔଵݔଶ (4) 

ܵ =  0.349080 − 2.12210 ௩ܲ − ܨ2.85042 + ௦ܨ0.166238 + 1.2360ܵ − ܧ6.45838 − +ݐ05 33.2521 ௩ܲܨ − ௦ܨܨ2.72190 − ܵܨ10.2033 + −ݐܨ0.00873790  ݐܵܨ0.0106366

where:  Pvac is the vacuum pressure, Ff is  the feed flowrate, Fs is the steam flowrate, t is the 
crystallisation time, S0 is the initial super-saturation. 

(5) 
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The factors that affect sugar crystal size, that can be easily measured online are identified in Eq(6). Using 
these factors, a two-level factorial experimental design was carried out based on the typical operating range of 
these factors in a fed-batch evaporative sugar crystallization unit (see Table 2).  
With the aid of a pareto chart analysis, factors and their interactions with low statistical significance on the 
response (crystal size) were eliminated to produce a simpler and final model presented in section 3. 

Table 2: Upper and lower values of input variables for sugar crystal size model 

S/N Symbol Variables Lower limit Upper limit 
1 T Temperature (oC) 65 75 
2 Pvac Vacuum pressure (bar) 0.2 0.3 
3 Ff Feed flowrate (m3/s) 0 0.0275 
4 Fs Steam flowrate (kg/s) 1.4 2.75 
5 S0 Initial super-saturation () 1.15 1.25 
6 t Crystallisation time (s) 1200 5400 
7 L0 Initial crystal size (microns) 10 12 

3. Results and discussion 

3.1 Regression model for sugar crystal growth rate 

Response surface central composite method on Minitab 14 statistical software was used to fit the DOE data 
reported in Table 1.  The resulting sugar crystal growth rate model is given in Eq(7). 
ܩ  = 12.5321 − 4.38199ܵ − 0.0610348ܶ − 0.0172929ܵଶ + 6.91967 × 10ିହܶଶ + 0.0135844ܶܵ (7) 

The performance of the developed regression model (Eq(7)) was compared with the crystal growth rate data 
obtained from the growth rate model developed by Georgieva et al (2003) (i.e. Eq(3))  under the same input 
conditions. The results show that the model reasonably fits the data with high R2 of 0.86. The experimental 
matrix for the prediction of sugar crystal growth rate consists of 31 runs in which the average and maximum 
relative errors in the predictions are 9.23% and 23.3%, respectively. The maximum relative error of 23.3% is 
as a result of non-inclusion of Psol and Vc in Eq(7) because they are not easily measured online. Hence, as 
crystallization proceeds, Vc increases while Psol decreases.  
Thus, towards the end of the crystallization batch, the predictions from Eq(7) will gradually deviate from the 
predictions from the model of Georgieva et al (2003) (Eq(3)). However, the advantage of Eq(7) is that it can be 
used for online prediction of sugar crystal growth rate as opposed to the existing models. 

 

Figure 1: Pareto chart showing the effects of input factors on sugar crystal size 
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3.2 Regression model for sugar crystal size 

The final reduced model developed in this paper for the prediction of sugar crystal size is given in Eq(8). The 
Pareto chart (Fgure 1) shows each of the estimated effects and the interaction of each effect. The interaction 
effects that had no statistical significance as shown in the Pareto chart (that is, those that are below the line 
running across the bars in the Pareto chart) are not included in Eq(8). 
ܮ  = 242.688 + 0.087247ܶ + 77.4442ܲ − ܨ6791.58 − ௦ܨ6.93352 − 222.285ܵ − ݐ0.109252 − 6.20908× 10ିହܶݐ − ܨ4865.77ܲ + ݐ0.0873013ܲ + ௦ܨܨ466.376 + −ܵܨ4653.64 ݐܨ0.732568 − ݐ௦ܨ0.00714577 +  ݐܵܨ2.45876

       (8) 

 
On comparing the performance of the model derived in Eq(6) with that of the final reduced model (Eq(8)),the  
regression  analysis  gives  the  value  of  the determination  coefficient,  R2 as  99.39%  which  indicates that 
only 0.61% of the total variations are not explained by  the  model.  Moreover,  the  model  predictions  have  a 
maximum  relative  error  of  4.6%  which  is  deemed accurate  enough  for  practical  applications.  In  
addition, analysis  of  variance  (ANOVA)  of  the  Eq(8) shows that the model is significant as reflected in the 
very low p-value in the main effects (see Table 3). 

Table 3:  Analysis of Variance for Sugar Crystal Size Regression Model 

SOURCE DF Seq SS Adj SS Adj MS F P 
Main Effects 6 6903945 6903945 1150658 2812.68 0.000 
2-Way interactions 6 625024 625024 104171 254.64 0.000 
3-Way interactions 2 5799 5799 2899 7.09 0.001 
 

4. Conclusions 

Hitherto, the existing sugar crystallisation process models contain variables that are difficult to measure online. 
Thus, these models are not in the form which can be directly utilised as soft sensor for real time estimation of 
CSD in the sugar crystallisation unit. In this study, a regression model for online estimation of sugar crystal 
size was developed as a function of easy-to-measure input variables. The performance evaluation of the 
model show that the coefficient of determination, R2 is 0.994 and the maximum absolute relative error (MARE) 
is 4.6%. It is concluded that the high R2 (~1.0) and the reasonably low MARE values are an indication that the 
proposed model can be used online for accurate estimation of sugar crystal size in a fed-batch vacuum 
evaporative crystalliser. 
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