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Curcumin is a natural polyphenolic compound with multiple properties such as anticancer, anti-inflammatory, 
antioxidant, antiviral, and cytoprotective action. It is expected that curcumin has the therapeutic potential to 
prevent diverse lifestyle-related diseases. However, curcumin is not readily soluble in water and presents low 
stability under light, heat and physiological pH conditions which, in addition, implies an extremely low level of 
bioavailability. On the other hand, oleogels are semisolid systems composed of a liquid phase that is 
physically entrapped by a structurant network, ultimately leading to the formation of a gel. The continuous 
phase consists of a hydrophobic liquid (e.g., an oil) where a self-assembled network (composed by the 
structurant) is responsible for the physical entrapment of the liquid. The structural conformation is always 
dependent on the type of structurant used, which will dictate the desired final application of the oleogels. In 
this work, the formulation of an oleogel specially designed to stabilize and transport curcumin and to protect 
the lipid phase –mainly composed of a fish oil concentrate– against oxidation processes has been optimized. 
To this end, a Box-Behnken Design was carried out to study the influence of the curcumin amount, the 
structurant concentration and the manufacturing temperature on the oxidation degree of the oleogelified lipid 
matrix and on the chemical stability of the curcumin transported by this system. The results were interpreted 
by using the multi-response surface methodology, obtaining the optimal oleogel formulation to minimize the 
lipid oxidation and maximize the content of vehiculized curcumin. 
The results show that the optimal oleogel formulation –for samples stored at 23 ºC– was achieved for the 
following values of the variables studied: [Curc.] = 0.150 wt.%, [Struc.] = 4.461 wt.% and T = 64.63 ºC. In 
contrast, for samples stored at 40 ºC, the optimal formulation obtained changed slightly: [Curc.] = 0.150 wt.%, 
[Struc.] = 7.000 wt.% and T = 62.82 ºC. Finally, results suggest that oleogels are interesting structured lipid 
systems to transport and protect bioactive compounds. 

1. Introduction 

Curcumin is a natural polyphenolic compound present in many types of medicinal herbs, especially in the 
rhizomes of the commonly known as turmeric (Curcuma longa). In addition to culinary uses, curcumin has also 
been applied for the treatment of certain lifestyle-related diseases such as cancer, heart diseases, and 
metabolic syndromes (Bhawana et al., 2011; Choi et al., 2012). In recent years, the FDA (Food and Drug 
Administration) has approved curcumin as a safe ingredient in food (up to 8g/day) and its consumption and 
that of its related food products have increased markedly (Chen et al., 2014). 
Currently, curcumin is among the most studied natural therapeutic agents –derived from plants– worldwide. 
Recently, a large number of studies have reported that curcumin has a broad spectrum of physiological effects 
and therapeutic properties such as anti-inflammatory, anti-infection, antibacterial, antifungal, anticancer, 
antispasmodic, antioxidant, antiamoebic, anti HIV, anti Alzheimer, antidiabetic, antifertility, etc. (Kumavat et 
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al., 2013; Ma et al., 2017; Naksuriya et al., 2016; Rai et al., 2015). However, due to its poor solubility in water 
and low stability under heat, light and physiological pH conditions or in the presence of metal ions, the 
application of curcumin is limited in food manufacturing. In addition to its physicochemical instability, curcumin 
presents a very low bioavailability after oral administration. The extremely low level of bioavailability, together 
with its rapid degradation speed under physiological and/or environmental conditions are the major limitations 
for the clinical or nutritional application of curcumin. This represents an important challenge, both for the 
scientific community and for the industry, which must design, develop and optimize systems for the 
encapsulation, protection, vehiculization, and release of curcumin (and other similar bioactive compounds), 
which will facilitate its application in the food and pharmaceutical industries, among others. 
Different authors have tested many methods or systems to encapsulate curcumin. Bisht et al. (2007) 
synthesized nanocurcumin –polymeric nanoparticle encapsulated formulation of curcumin– using micellar 
aggregates of cross-linked and random copolymers of N-isopropylacrylamide, with N-vinyl-2-pyrrolidone and 
poly(ethyleneglycol)monoacrylate. Unlike free curcumin, they observed that nanocurcumin is readily soluble in 
aqueous solutions and they demonstrated that nanocurcumin formulation had comparable therapeutic efficacy 
to free curcumin against pancreatic cancer cell lines in vitro, by inhibiting cell viability and colony formation in 
soft agar. Maiti et al. (2007) developed a new curcumin formulation in combination with phospholipids to 
explore the protective effect of the curcumin-phospholipid complex on carbon tetrachloride induced acute liver 
damage in rats. The results obtained showed that the curcumin-phospholipid complex presented better 
hepatoprotective activity, due to its better antioxidant property, than free curcumin at the same dose level. 
Thangapazham et al. (2008) incorporated curcumin into liposomes (nanodelivery vehicles primarily composed 
of phospholipids) coated with prostate membrane specific antigen. The results suggest that liposome 
formulations are effective nanodelivery vehicles that increase the bioavailability of curcumin and show high 
therapeutic effects compared with free curcumin. Yu and Huang (2010) proved that hydrophobically modified 
starch, a food-grade amphiphilic biopolymer, is able to self-assemble to form micelles and to encapsulate 
curcumin into its hydrophobic core. Encapsulated curcumin revealed increased water solubility by about 1670 
folds and the anticancer activity was also enhanced compared to free curcumin. Esmaili et al. (2011) used 
camel beta-casein, an amphiphilic self-assembling protein, to form micellar nanostructures to encapsulate 
curcumin. They observed that curcumin encapsulated in beta-casein micelles increased the curcumin 
solubility up to 2500 folds, its antioxidant activity and bioavailability. Recently, Ma et al. (2017) used oil-in-
water nanoemulsions varying the triacylglycerol compositions to incorporate curcumin. These authors 
concluded that the curcumin nanoemulsion could reach the highest amount of curcumin by choosing medium 
chain triglycerides as the oil phase, providing an interesting reference to enhance the application of curcumin 
in the food industry, improving its solubility and bioavailability. 
On the other hand, oleogels are examples of alternatively (non-TAG)-structured lipid systems that are recently 
being a subject of huge research interest due to their applications as fat replacements in a variety of food 
products and due to their enormous potential in different fields such as lubrication, separation science, 
pharmaceuticals and foods (Martins et al., 2018; Patel et al., 2013). Oleogels are semisolid systems –soft 
matter systems– composed of a liquid phase that is physically entrapped by a structurant network, ultimately 
leading to the formation of a gel. The continuous phase is made of a hydrophobic liquid (like oil or an organic 
solvent) where a self-assembled network (composed by the structurant or gelling agent) is responsible for the 
physical entrapment of the liquid (Patel et al., 2013). The structural conformation is always dependent on the 
type of structurant used, which will dictate the desired final application of the oleogels. Some of the most 
significant physical properties of oleogels are a consequence of the type of structurant used to induce gelation 
(fatty acid derivatives, cellulose polymers, shellac, natural waxes –plant and animal– and resins, phytosterols 
and oryzanol, lecithin, etc.) and the type of the method used (direct or indirect) (Martins et al., 2018). One of 
the main advantages of this type of systems is that they can modify different physicochemical properties, the 
rheological behaviour, and texture properties; to control phases separation and decrease the mobility and 
migration of lipophilic bioactive compounds (such as curcumin, etc.) from the oil phase, providing solid-like 
properties without using high levels of saturated fatty acids as well as to be a carrier of interesting bioactive 
compounds for the cosmetic, food and pharmaceutical industries (Osullivan et al., 2017). In addition, by 
creating a gel-like structure, diffusion of oxygen and pro-oxidant metals inside the oil phase is hindered, thus 
protecting the polyunsaturated fatty acids contained in the oil. 
This study aimed to develop and optimize a physicochemically stable oleogel formulation containing a high 
content of curcumin and, in turn, minimizing the lipid oxidation of the oleogelified matrix –mainly composed of 
fish oil enriched in omega-3 polyunsaturated fatty acids. 
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2. Materials and methods 

2.1. Materials 

Fish oil enriched in omega-3 polyunsaturated fatty acids (PronovaPure oil containing 36.0 % EPA and 24.0 % 
DHA TG Deodorized) and Palsgaard® 6111 powder (fully hydrogenated rapeseed oil, kindly supplied by 
Palsgaard, Denmark) were used as the oil phase and gelling agent for the preparation of all oleogels in this 
study. Curcumin (E-100, 85 % purity) was received from Solutex, Spain. 

2.2. Methods 

2.2.1. Preparation of oleogels 
All the oleogels were prepared to disperse accurately weighed quantities of Palsgaard® 6111 and curcumin 
into fish oil to achieve the concentration ranges desired. The samples were premixed for 2 minutes using a 
magnetic stirrer at maximum agitation speed (1600 rpm). Later, the mixtures were heated using bain-marie at 
different temperatures (always above the melting point of the Palsgaard® 6111, > 60 ºC) under mild agitation 
(400 rpm). Heating was performed as quickly as possible to minimize curcumin and fish oil exposure to heat. 
Dispersions of curcumin were then immediately cooled to room temperature (23 ºC) while being stirred using 
the magnetic stirrer at maximum agitation speed (1600 rpm), until curcumin was fully dispersed in the oil 
phase and no specks were visible (~ 3 minutes), resulting in the formation of oleogels. The latter, immediately 
after formation, were placed in a sealed screw cap glass tube and kept in an oven for 50 days at 23 and 40 ºC 
to promote potential oxidation processes. The described method ensured that the curcumin was fully 
dissolved in the oil phase before oleogelified structure formation. 

2.2.2. Lipid oxidation measurements 
Oleogel chemical stability was determined by measuring the lipid oxidation after its preparation and during 
storage. To this end, both primary and secondary lipid oxidation products were measured. The first ones were 
quantified by the peroxide value method (PV) using the colorimetric ferric-thiocyanate method, adapted from 
Shantha and Decker (1994), and the second ones using the p-anisidine value technique (p-AnV), described in 
the American Oil Chemical Society (AOCS) CD 18-90 (1998). 

2.2.3. Curcumin stability studies 
The content of curcumin was determined by UV spectrophotometry. Measurements (wavelength equal to 425 
nm) were carried out at 23 ºC after diluting 500 times in 95 % ethanol. A standard curve was used to quantify 
the content of curcumin in the oleogels. 

2.2.4. Statistical analysis 

Table 1: BBD matrix for the optimization of the oleogel formulation. 

Experiment [Curc.], wt.% [Struc.], wt.% T, ºC 
Control 0.10 0.0 70 
Exp 1 0.15 5.0 80 
Exp 2 0.10 3.0 60 
Exp 3 0.10 5.0 70 
Exp 4 0.15 7.0 70 
Exp 5 0.10 3.0 80 
Exp 6 0.05 7.0 70 
Exp 7 0.10 7.0 60 
Exp 8 0.05 3.0 70 
Exp 9 0.05 5.0 80 
Exp 10 0.10 7.0 80 
Exp 11 0.10 5.0 70 
Exp 12 0.15 3.0 70 
Exp 13 0.10 5.0 70 
Exp 14 0.05 5.0 60 
Exp 15 0.15 5.0 60 
Both the oleogel formulation and the manufacturing conditions were optimized by a statistical experimental 
design in combination with an analysis of the multi-response surface. In this study, the curcumin content, the 
amount of structuring agent and the manufacturing temperature were selected as independent variables, and 
the oxidation degree of the oleogelified lipid matrix and the amount of vehiculized curcumin as response 
surface (RF). The ranges tested for the selected variables were equal to 0.05-0.15 wt.% for the curcumin 
content, 3.0-7.0 wt.% for the amount of structurant and 60-80 ºC for the manufacturing temperature. A Box-
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Behnken Design (BBD) was applied to simultaneously calculate the effect of the change in each of these 
variables and also their possible interactions. Three levels were considered for each variable, including three 
repetitions of the central point to verify the reproducibility of the model, which results in a total of 15 
experiments (Table 1). In addition to the oleogels obtained by means of the experimental design, a control 
sample was prepared by dissolving curcumin (0.10 wt.%) directly in fish oil enriched in omega-3 PUFAs at a 
medium manufacturing temperature (70 ºC), following the procedure described in the section 2.2.1. The 
reason for preparing this control sample was to be able to compare the beneficial effect provided by the use of 
oleogels versus ungelled fish oil. The experimental conditions were established randomly combining the 
minimum, medium and maximum values of each variable studied. The optimization of the model was carried 
out with the software Statgraphics Centurion XV and the results were interpreted by using the multi-response 
surface methodology (M-RSM). 

3. Results and discussion 

3.1. Lipid oxidation stability of the oleogels 

Figure 1 shows the evolution in time of the lipid oxidation measured at two different storage temperatures (23 
and 40 ºC) –Figure 1A corresponds to the concentration of lipid hydroperoxides and Figure 1B to the 
concentration of secondary lipid oxidation products. 
 

 

Figure 1: Lipid oxidation measured as a function of time at two different storage temperatures (23 ºC and 40 
ºC). (A) Concentration of lipid hydroperoxides and (B) concentration of secondary lipid oxidation products. 

As it can be seen, different evolution patterns occurred depending on the studied variables. In Figure 1A, the 
appearance of areas in which the concentration of lipid hydroperoxides increases and areas in which 
decreases is frequent. The former would represent the oxidative processes experienced by the PUFAs when 
they react with oxygen and produce these primary lipid oxidation products, while the latter would represent the 
oxidation of these primary oxidation products to give rise to the secondary lipid oxidation products. Therefore, 
depending on the rates of the primary and secondary oxidation reactions, there will be an increase or a 
decrease in the concentration of lipid hydroperoxides. In addition, from a careful analysis of the concentration 
of lipid hydroperoxides of the different samples tested, interesting conclusions can be drawn. It was observed 
that oleogels 11 and 13 showed the lowest final lipid hydroperoxide concentrations, even lower than that 
exhibited by the control sample for the same period of time (note that the only difference between samples 11 
and 13 and the control is that the former contained a certain amount of structurant and, therefore, formed 
oleogelified structures, while the control did not carry structurant and, therefore, did not form an oleogel). 
These results suggest that oleogelified systems offer greater protection against the oxidation processes of 
PUFAs, probably due to the modification of the rheological properties of the system, especially the increase of 
its viscosity, which would reduce the oxygen diffusion process through the lipid matrix and, therefore, lead to 
an increase of their oxidative stability. According to this, oleogel 9, containing the lowest concentration of 
curcumin and manufactured at the highest temperature, is the one that showed the worst performance against 
primary oxidation. 
On the other hand, unlike what occurred in the study of primary lipid oxidation, in the samples stored at 23 ºC 
of Figure 1B it can be noted that the concentration of secondary lipid oxidation products remains relatively 
constant throughout the time studied; however, in the samples stored at 40 ºC, areas in which the 
concentration of secondary lipid oxidation products increases and areas in which decreases are again 
observed. The increase in the concentration of secondary lipid oxidation products is due to the oxidative 
processes experienced by the primary lipid oxidation products when they react with oxygen, while the 
decrease in concentration is due to the oxidation of these secondary products that leads to the formation of 
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volatile and low-molecular-weight compounds. Therefore, these results suggest that these secondary lipid 
oxidation processes require higher storage temperatures or, on another hand, occur at longer storage times. 
Furthermore, it was observed that oleogels 11 and 13 showed relatively high final secondary lipid oxidation 
products concentrations compared to the concentration exhibited by the control sample during the same 
period of time. In view of these results, the lower lipid hydroperoxides concentration of these oleogels could be 
attributed to the fact that part of their lipid hydroperoxides had already been oxidized and become secondary 
lipid oxidation products. In contrast, oleogel 9 showed secondary lipid oxidation products concentration values 
similar to those measured in the control sample and, in any case, lower than those of oleogels 11 and 13. This 
may be due to the fact that this oleogel formulation retards the oxidation of the primary to secondary lipid 
oxidation products for a longer time and, consequently, the secondary lipid oxidation products concentration is 
lower at the expense of the secondary lipid oxidation products concentration, which is higher. 
Therefore, as has been reported by Kargar (2014), a lower primary lipid oxidation products concentration 
usually leads to a higher secondary lipid oxidation products concentration and vice versa. Consequently, a 
compromise solution must be reached, seeking the optimal oleogel formulation so that the primary and 
secondary lipid oxidation products concentrations, together, are minimal. 

3.2. Optimization study of the oleogel formulation 

The M-RSM was applied to achieve the optimal oleogel formulation which, in this case, involved minimizing 
the lipid oxidation of the oleogel and maximizing the amount of vehiculized curcumin. The results are shown in 
fig. 2, that represents the estimated response surface for the effect of the amount of structuring agent and the 
manufacturing temperature on the overall desirability for a constant curcumin content (equal to the optimum 
reached in each case) at two different storage temperatures (figs. 2A and 2B, respectively). 

 

Figure 2: Estimated multi-response surface for the effect of the amount of structurant and the manufacturing 
temperature on the overall desirability, for a constant curcumin content at two different storage temperatures. 
(A) 23 ºC and (B) 40 ºC. 

As explained before, secondary lipid oxidation takes place from the products generated in primary lipid 
oxidation; therefore, minimizing the latter will intrinsically reduce the former. On the other hand, curcumin has 
beneficial therapeutic properties; however, its presence in the oleogel does not deteriorate the quality of the 
final product, unlike what happens with the oxidative processes of fish oil. According to this, different 
importance for each of the RFs were considered, assigning different weights. The weighting applied to each of 
the RFs for the optimization study is 50 % for primary lipid oxidation, 10 % for secondary lipid oxidation and 40 
% for the content of curcumin in the oleogel, obtaining the optimal result shown in Table 2. 

Table 2: Optimized input parameters for the oleogel formulation. 

Tstorage, ºC [Curc.], wt.% [Struc.], wt.% T, ºC Desirability 
23 0.150 4.461 64.63 0.881 
40 0.150 7.000 62.82 0.911 
 
Table 2 shows that the optimum amount of curcumin is the maximum of those tested. Thanks to its antioxidant 
capacity, the oxidative processes of fish oil concentrate are minimized, in addition, to maximize its presence in 
the oleogel. On the other hand, the highest optimal structurant concentration obtained for samples stored at 
40 ºC compared to those stored at 23 ºC confirms what was mentioned in the previous section: oleogelified 
systems offer greater protection against the oxidation processes of PUFAs, favored at higher storage 
temperatures. Finally, it is known that temperature increases the speed of any reaction so that the optimum 
manufacturing temperatures are relatively low in both cases and close to the minimum necessary to form the 
oleogel. 
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4. Conclusions 

By using the M-RSM, the optimal oleogel formulation was determined in order to minimize the lipid oxidation of 
the oleogel and maximize the content of vehiculized curcumin. The optimum conditions for samples stored at 
23 ºC were achieved for the following values of the variables studied: [Curc.] = 0.150 wt.%, [Struc.] = 4.461 
wt.% and T = 64.63 ºC; while for samples stored at 40 ºC, the optimal formulation obtained changed slightly: 
[Curc.] = 0.150 wt.%, [Struc.] = 7.000 wt.% and T = 62.82 ºC. These results suggest that oleogels are very 
interesting structured lipid systems to transport and protect bioactive compounds. 
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