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Sour cassava starch is a product obtained from cassava (Manihot esculenta Crantz) processing to overcome 
raw material toxicity and low nutritional value (lipids and proteins). It has the potential to succeed in the 
international market due to its innovative use in gluten-free baked products. However, the requirements of this 
market are high and a standardized fermentation process is necessary to obtain an innocuous product of 
homogeneous quality. The aim of this work was to produce sour cassava starch in a pilot-scale fermentation 
process with Lactobacillus plantarum as a single culture and in co-culture with Pichia scutulata and to 
determine the fatty acids and volatile compounds profile. The starter cultures contributed to standardization 
because, regardless of the culture tested, it was possible to obtain sour cassava starches safe for 
consumption (absence and low counts of pathogens) with satisfactory acidity (between 1and 5 %) and 
expansion capacity (higher than 1.00). The products obtained with single and mixed cultures exhibited a 
reduction of saturated fat (3.6 % and 8.1 %, respectively), an increase of the unsaturated fat (2.3 times), and 
an increase of the oleic, linoleic and linolenic acids proportion. These fatty acids have a positive effect on 
human health and wellbeing. A greater variety of desirable volatile compounds was a differential of the product 
obtained with the mixed culture. Therefore, L. plantarum with P. scutulata was the starter culture that exhibited 
better results in the pilot-scale fermentation process and has the potential for the industrial production of sour 
cassava starch. 

1. Introduction 

The cultivation and consumption of cassava (Manihot esculenta Crantz) are present in the culture of different 
nations and it is of great importance to the South American and African economies. Although widely 
consumed, cassava presents limitations of trade and industrial applications mainly due to fast post-harvest 
deterioration and intrinsic toxicity (Alamu et al., 2017). In addition, the low concentration of important nutrients, 
such as proteins and unsaturated fatty acids, in their roots impacts on undernourished populations that use 
this root and its by-products as one of the main source of calories because they are rich in carbohydrates as 
well as some minerals and vitamins (Burns et al., 2012). Thus, different technological processes have been 
applied and proposed to overcome these limitations and increase the commercial value of this crop. 
The natural fermentation of the starch extracted from the cassava root followed by sun drying to obtain the 
sour cassava starch is a traditional technology widely used in Brazil (Demiate and Kotovicz, 2011). A varied 
microbiota from the raw material, water, and fermentation tanks begins a competition that culminates in the 
spontaneous fermentation of the starch with the participation of yeasts and the predominance of lactic acid 
bacteria (LAB), mainly of the genus Lactobacillus (Penido et al., 2018). During fermentation, the metabolism of 
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these microorganisms alters the cassava starch and remove the cyanogenic glycosides, mainly responsible 
for its toxicity (Montagnac et al., 2009). The LAB hydrolyze the starch and acidify the medium, which leads to 
the improvement of sour cassava starch aroma and in the production of antimicrobial compounds, which 
inhibit the growth of pathogenic microorganisms (Jácome et al., 2014). On the other hand, the yeasts, when 
used in mixed cultures, can contribute to the improvement of the sensorial characteristics of fermented 
products through the synthesis of different volatile compounds (Sorrentino et al., 2013). Nevertheless, the 
spontaneous fermentation for the production of sour cassava starch occurs in small and medium-sized rural 
industries in an empirical and rudimentary way. This fermentation culminates in low homogeneity and low-
quality products. The reasons are the lack of standardization and the complexity of the natural microbiota 
(Penido et al., 2018). The objective of this work was to produce sour cassava starch in a pilot-scale 
fermentation process with the use of Lactobacillus plantarum as a single starter culture and in co-culture with 
Pichia scutulata to evaluate its impact on physicochemical and microbiological parameters, fatty acid profile, 
and volatile compounds. 

2. Materials and Methods 

2.1 Pilot-scale fermentation process 

A single starter culture of L. plantarum (C1) and a mixed culture of L. plantarum in association with P. 
scutulata (C2) were submitted to fermentation for 21 days at room temperature to produce sour cassava 
starch in a pilot scale (Penido et al., 2018). The initial inoculum volume was 500 mL and the starter culture 
counts were 7 log10 CFU/mL for L. plantarum isolates and 5 log10 CFU/mL for P. scutulata isolates. The 
fermentation took place in bioreactors with 5 L of distilled water and 10 % of cassava starch (in 4 batches) and 
the material was sun-dried for 8 hours. The samples collected weekly were used to determine the pH and total 
titratable acidity (TTA) (AOAC, 2016) and to verify the viability of the starter cultures by the plate counting 
method (MRS agar for LAB and YM agar for yeasts). For the monitoring of the starter cultures, the L. 
plantarum isolates were submitted to DNA extraction, PCR amplification of the 16S rRNA gene and analysis of 
the molecular profiles obtained by Restriction Fragment Length Polymorphism (Penido et al., 2018). The 
molecular monitoring of P. scutulata isolates consisted of DNA extraction and analysis of the molecular 
profiles obtained by PCR fingerprinting using the microsatellite primer (GTG)5 (5'-GTGGTGGTGGTGGTG-3') 
(Penido et al., 2018). The molecular profiles of each species were compared at different fermentation times 0 
(pure starter cultures), 7, 14 and 21 days. To verify if the strain of L. plantarum used as starter culture 
remained during fermentation, the rep-PCR fingerprinting technique was used with the primer (GTG)5 (Gevers 
et al., 2001). The profiles of the inoculated strain (L. plantarum Lp3) and the LAB isolated at time 0 and 21 
days were compared. The final products P1 and P2 (obtained with the starter culture C1 and C2, respectively) 
were submitted to the determinations of TTA, expansion capacity (Maeda and Cereda, 2001) and 
microbiological analysis (Bacillus cereus, thermotolerant coliforms, and Salmonella spp.) (Da Silva et al., 
2012). Commercial cassava starch was used as raw material for fermentation, considered as control and 
submitted to microbiological analysis. 

2.2 Lipid extraction and fatty acid profile analysis by gas chromatography 

An aliquot (200 g) of each final product (P1 and P2) and one of the commercial cassava starch (control) were 
subjected to lipid extraction using hexane (400 mL), under agitation (150 rpm for 1 h at 25 °C). After solvent 
evaporation, fatty acids were converted into methyl esters and its derivatives profile were determined (Sande 
et al., 2018) by gas chromatography (HP5890 gas chromatograph equipped with a flame ionization detector). 
The column used was Supelcowax-10 (30 m x 0.2 mm x 0.2 μm) with the following temperature gradient: 150 
°C at 0 min; increasing 10 °C/min up to 240 °C. The split rate injector operated at 1/50 at 250 °C, which was 
also the temperature of the detector. The carrier gas was hydrogen with a flow rate of 4 mL/min and an 
injection volume of 1 μl. The peak identification was done by comparison with Fatty Acid Methyl Ester (FAME) 
C14 - C22 (Supelco-18917) standards. 

2.3 Analysis of volatile compounds by Gas Chromatography / Mass Spectrometry (GC/MS) 

An aliquot (25 g) of each final product (P1 and P2) and one of the commercial cassava starch (control) were 
subjected to volatile compounds extraction using hexane (90 mL), under agitation (150 rpm for 1 h at 25 °C). 
After solvent evaporation, the detection, identification, and total area (%) of the volatile compounds present in 
the samples were performed by a chromatograph (Agilent 7890B) equipped with a mass spectrometry 
detection system (Agilent 5977A-MSD), with the quadrupole type mass analyzer. The capillary column used 
was CP-WAX 52 CB (Polyethylene glycol, 30 m x 0.25 mm x 0.25 μm). The temperature setting of the oven 
started at 60 °C for 5 min and then increasing 20 °C/min up to 160 °C, remaining for another 5 min. After that, 
there was an increase of 5 °C per minute up to 240 °C. The analytical run totaled 37 minutes. The carrier gas 
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was helium with a flow rate of 1 mL/min and an injection volume of 1 μL in the splitness mode. The data 
acquisition occurred in the Full Scan mode, using mass ratio (m/z) from 14 to 500. The chromatograph 
interface with the detector was maintained at 240 °C and the electron impact ionization operated at 240 °C 
was used. The mass analyzer was a simple quadrupole type operated at 150 °C. The mass and fragmentation 
profile of the peaks found were compared to the National Institute of Standards and Technology (NIST) library. 

2.4 Statistical Analysis 

The physicochemical and microbiological monitoring data of the pilot-scale fermentation process at each time 
point, as well as the results of the final products, were compared by an unpaired, two-tailed t-test with 95 % 
confidence. The similarity (%) and the correlation between the TTA and pH were calculated using the Pearson 
correlation coefficient (r). Microbial counts over time were compared individually through a one-way ANOVA 
followed by Tukey's multiple comparison tests, with 95 % confidence. GraphPad Prism 5.02 was used. 

3. Results and Discussion 

3.1 Monitoring of pilot-scale fermentation process 

The TTA values increased gradually up to the 21st day of fermentation, with no significant difference between 
cultures C1 and C2, over time. At time 0, the TTA values of the fermentations with different starter cultures 
were below 1 % and reached values above 2.0 % at the end of the fermentation with C1 ranging from 0.63 to 
2.37 % and C2 varying from 0.67 to 2.30 %. This shows the fermentative efficiency of the two cultures, which 
was also reinforced by the presence of a strong positive correlation between the ATT values over time 
between C1 and C2 (r2 = 0.91). These TTA results were confirmed by the pH analysis. During the 21 days of 
fermentation, the different starter cultures pH did not differ (p <0.05). The pH of the fermentation with C1 and 
C2 ranged from 3.5 to 2.8, with the lowest pH values occurring in the last day of fermentation. The 
fermentative efficiency of both cultures was also confirmed by the presence of a strong positive correlation 
between pH values over time between C1 and C2 (r2 = 0.93). The main role of the LAB in fermentations is to 
cause a fast decrease in the pH of the medium, which favors product safety by inhibiting pathogenic 
microorganisms and prevent undesirable changes caused by deteriorating microorganisms. In the present 
study, the fermentation lasted for only 21 days, less than suggested by Penido et al., 2018 (28 days) and led 
to the obtainment of a final product with satisfactory acidity. This reduction in time, in addition to standardizing 
the process, is justified by the fact that the longer the fermentation lasts, the lower the strength and stability of 
the sour cassava starch mass (Adegunwa et al., 2011). 

 

Figure 1: Dendrogram showing the genetic relatedness among L. plantarum isolated from the pilot-scale 
cassava starch fermentation as determined by the rep-PCR fingerprinting analysis 

The counts of L. plantarum did not differ over time nor among the different starter cultures (p > 0.05) (Figure 1) 
and remained close to the counts of the initial inoculum (about 7 log10 CFU/g). The counts of P. scutulata, 
which initially were about 5 log10 CFU/g, declined gradually over the 21 days (p < 0.05). It is important to note 
that L. plantarum counts in mixed culture were not reduced and the yeast was found until the last day of 
fermentation. These results were superior to those found by Penido et al. (2018) which found a reduction in 
the counts of L. plantarum and L. brevis when in co-culture with P. scutulata throughout the fermentation. All 
LAB isolated from the bioreactors containing the C1 and C2 starter cultures were gram-positive and catalase 
negative rods. All of them presented the same molecular profile, which is similar to the profile of the inoculated 
species L. plantarum. The L. plantarum isolates obtained during pilot-scale fermentation at the initial and final 
fermentation times showed the similarity of 97 % with the inoculated strain (L. plantarum Lp3) and similarity of 
approximately 98 % with each other (Figure 1). This proves that they belong to the same strain and that the 
starter culture used in the study can remain viable until the end of the fermentation. All yeasts isolated from 
the bioreactors containing the C2 starter culture had the same molecular profile, which is similar to the profile 
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of the species P. scutulata. It was observed that the molecular profiles of the single starter cultures were 
equivalent to those of the other isolates. Therefore, the molecular techniques used allowed the verification of 
the permanence of the inoculated microorganisms during the 21-day pilot-scale fermentation and 
demonstrated their potential use for this purpose.  

3.2 Physicochemical and microbiological evaluation of the final product 

In relation to the TTA, the sour cassava starches obtained with the C1 and C2 starter cultures did not differ 
from each other (p > 0.05). However, it is important to note that with both starter cultures it was possible to 
obtain sour cassava starch because the acidity values were higher than 1 % and, according to Brazilian 
legislation, the maximum acidity of 1 % characterized sweet cassava starch and the maximum acidity of 5 % 
characterizes sour cassava starch. The values of expansion capacities for sour cassava starches P1 and P2 
did not differ among themselves (p > 0.05). Nonetheless, both expansion values were higher than 1.00, which 
indicates that the fermented cassava starch became an expandable mass, a fundamental characteristic that 
allows its use in bakery products. The capacity of expansion of the sour cassava starch, without the need of 
chemical or biological ferments and in the absence of gluten, is the main property that differentiates it from 
other starches (Marcon et al., 2009). Microbiological analysis of cassava starch revealed the presence of 
suggestive colonies of B. cereus (1.50 x 103 CFU/g). To verify the presence of B. cereus in cassava by-
products is important because it is a spore-forming and toxin-producing endophytic microorganism that can 
cause food poisoning when present at counts above 105 CFU/g. For the analysis of thermotolerant coliforms, 
all samples presented the result < 3 MPN (Most Probable Number)/g. The other results were the absence of 
Salmonella spp. in 25 g of all samples. Therefore, both sour cassava starches produced in a pilot-scale 
fermentation process would be suitable for human consumption. During fermentation, the presence of the 
yeast, which is amylolytic, does not appear to have contributed to increased acid production by the LAB. The 
reason might be the presence of B. cereus, which is also amylolytic, in the raw material, making it possible to 
hydrolyze the starch when L. plantarum was in a single culture. However, the use of both starter cultures for 
the cassava starch fermentation led to the production of sour cassava starches with the satisfying values of 
acidity, able to expand and with good control of the pathogenic microorganisms. 

3.3 Profile of fatty acids from sour cassava starches  

In relation to cassava starch, the sour cassava starches P1 and P2 resulted in a reduction of saturated fat of 
3.6 % and 8.1 % respectively, and in an increase of the unsaturated fat of approximately 2.3 times (Table 1). 

Table 1: Fatty acids profile of cassava starch and sour cassava starch samples after gas chromatography 
analysis (TR = retention time) 

Fatty acids 
Area (%) 

TR 
(min) 

Cassava 
starch 

P1 P2 

C14:0 (Myristic acid) 3,976 4,2 1,7 1,6 
C16:0 (Palmitic acid) 5,500 33,9 40,2 35,8 
C16:1 (Palmitoleic acid) 5,724 3,1 4,3 4,7 
C18:0 (Stearic acid) 7,090 18,6 10,7 11,0 
C18:1 (Oleic Acid) 7,276 7,1 16,7 18,7 
C18:2 (Linoleic acid) 7,658 0,4 3,6 3,1 
C18:3 (Linolenic acid) 8,188 1,4 3,0 1,3 
C20:0 (Arachidic acid) 8,835 0,6 1,2 0,9 
Others  30,7 18,8 23,1 
 
A higher content of mono and polyunsaturated fats aggregates higher nutritional value to the food (Sande et 
al., 2018). Oleic acid (omega-9), linoleic acid (omega-6) and linolenic acid (omega-3) are essential fatty acids 
that play key roles in the proper functioning of human metabolism, as they can not be synthesized by the 
human body (Tan and Muhamad, 2017). Fermentation of cassava starch using L. plantarum and L. plantarum 
with P. scutulata was able to increase considerably the proportion of these three acids in the final product 
(Table 1). This increase in nutritional quality justifies the use of starter cultures for the production of sour 
cassava starch. Cassava is cultivated for its starch-rich tuberous roots, but its seeds are known to be rich in 
oils and fatty acids (Alves et al., 2014). These fatty acids were found, in lower concentrations, in the cassava 
starch. In addition to the fatty acids from the raw material, microorganisms can also contribute to their 
production because lipids, especially polyunsaturated fatty acids, are components of the cell membrane. 
Palmitic, stearic, oleic, linoleic and linolenic acids were identified as cell fatty acids of strains of L. plantarum 
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(Coulibaly et al., 2009) and as metabolites produced by isolates of this species (Vanaja et al., 2011). In the 
fermentation of yakupa, beverage obtained from cassava fermentation, palmitic, stearic, linoleic and oleic 
acids were detected (Freire et al., 2015). The yeasts also showed an important role in the production of fatty 
acids in cassava fermentation. The increase of lipids positively alters the physicochemical properties of 
starchy foods, such as sour cassava starch. This happens because the formation of complexes between the 
amylose fraction of the starch and the lipids affects the formation of the structure and the texture of these 
foods (De Pilli et al., 2011). Therefore, the use of starter cultures benefits the quality of the final product, 
increasing the content of unsaturated fatty acids. 

3.4 Volatile compounds and fatty acids 

A total of 19 compounds were identified by GC-MS in the samples (Table 2). Palmitic acid, a very common 
fatty acid, was the only compound that was present in all samples. Only one phenol, 2,4-Di-tert-butyl phenol, 
was detected. This volatile organic compound presented antifungal activity, antioxidant activity and 
demonstrated the potential for the development of a food additive (Varsha et al., 2015). Sclareol is perfumed 
bicyclic diterpene alcohol, which has already been found in essential oils (Tongnuanchan and Benjakul, 2014). 
The P2 sample showed the highest diversity of compounds. The 4-hexyl-2,5-dihydro-2,5-dioxo-3-furanacetic 
acid is a compound naturally found in small amounts in a wide variety of foods, including wines (García-
Carpinteiro et al., 2011) and is characterized by woody odor. Geranyl isovalerate, on the other hand, is 
associated with a fruity aroma. The compounds detected in the samples of cassava starch and sour cassava 
starches are volatile components that present a desirable aroma, antioxidant and antimicrobial activity. 

Table 2: Identification of volatile compounds and fatty acids in cassava starch and sour cassava starch 
samples after analysis by GC-MS 

 Compounds Molecular 
formula 

TR (min) 
Cassava 

starch 
 

P1
 

P2
FATTY ACIDS: Linoleic acid C18H32O2 26.140   x 

Palmitic acid C16H32O2 31.612 x x x 
9-Hexadecenoic acid C16H30O2 32.203  x x 
Stearic acid C18H36O2 35.669   x 
4-Hexyl-2,5-dihydro-2,5-dioxo-3-furanacetic acid  C12H16O5 17.692   x 

ALCOHOLS: 2-Octyl-1-dodecanol  C20H42O 12.972 x   
2-Hexyl-1-decanol  C16H34O 16.705   x 
trans-9-Hexadecen-1-ol  C16H32O 23.069 x   
2-Methyl-1-hexadecanol  C17H36O 26.664 x  x 
Sclareol C20H36O2 32.621  x  

KETONES: 2-Isopropyl-5,5-dimethylcyclohex-2-enone C11H18O 19.174   x 
4,4a,5,6,7,8-hexahydro-4a-methyl-2(3H)-
Naphthalenone 

C11H16O 22.384  x  

13β-methyl-13-vinyl-Podocarp-7-en-3-one C20H30O 32.515  x  
ESTERS: 6-Pentyl-2H-pyran-2-one  C10H14O2 19.163  x  

Phthalic acid, butyl tetradecyl ester C26H42O4 25.828   x 
Phthalic acid, butyl octyl ester C20H30O4 28.335 x   
Geranyl isovalerate C15H26O2 30.258   x 

ETHER: 14-Oxatricyclo [9..2.1.0(1,10)]tetradecane,
2,6,6,10,11-pentamethyl-  

C18H30O 31.038  x  

PHENOL: 2,4-Di-tert-butyl phenol C14H22O 21.810 x x  

4. Conclusions 

Both starter cultures exhibited good performance for the production of sour cassava starch in a pilot-scale 
fermentation process. L. plantarum contributed to the acidification of the medium and inhibition of the 
pathogens. P. scutulata contributed to the production of desirable aromatic compounds. Therefore, L. 
plantarum in association with P. scutulata was the starter culture that exhibited better results in a pilot-scale 
fermentation process and led to the obtainment of a cassava starch safe for human consumption, with 
satisfactory acidity, expansion capacity, higher unsaturated fat content, and with the presence of desirable 
volatile compounds. 
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