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Variational methods are useful for finding numerical solutions of differential equations, which are the 
corresponding Euler-Lagrange equations to the stationary condition of the functional. Usually the functional is 
a maximum or a minimum with respect to some function, but in some cases the functional is a saddle point. In 
this work a saddle point variational formulation is proposed to solve fluid dynamic problems, and the saddle 
point is found through an iterative method using the optimization software GAMS. Two case studies are solved 
to show the applicability of the proposed method, one for a single fluid in a two dimensional laminar flow in a 
pipe and another for a one dimensional turbulent flow for gas-liquid column. 
Key Words: variational formulation, saddle point, fluid dynamics. 

1. Introduction 
Fluid dynamic problems are usually solved as a set of partial differential equations, given by the momentum 
balance and the continuity equation (Bird et al, 2002). There are many methods available, ranging from 
analytical solutions for simple problems to numerical methods for more complicated ones, and the finite 
volume methods is one with widespread use. 
Variational methods have been used only on a limited number of cases in fluid dynamic problems, mostly due 
to the lack of a corresponding variational formulation where the stationary condition corresponds to the original 
set of differential equations. 
In general, variational methods are useful for finding numerical solutions of differential equations, which are 
the corresponding Euler-Lagrange equations to the stationary condition of the functional. Usually the 
functional is a maximum or a minimum with respect to some function, but in some cases the functional is a 
saddle point. In this work a saddle point variational formulation is proposed to solve fluid dynamic problems, 
and the saddle point is found through an iterative method using the optimization software GAMS. Two case 
studies are solved, one for a two dimensional laminar flow of a single fluid in a pipe and another for a one 
dimensional turbulent laminar flow in a gas-liquid column. The results of the first case are compared with an 
analytical solution, while the second case is compared with the finite volume method. 

2. Methodology 
2.1 Variational Formulation 

The proposed method is described as follows. Consider a function given by: ߶(ݔଵ, (ଶݔ = ଵݔ ∙ ࢞ଶݔ ∈ ܺ                                                                                                                                                                      (1) 

This function has a saddle point at ݔଵ = 0 and ݔଶ = 0. While there are many algorithms to find a minimum 
point, there are not many algorithms for finding a saddle point. Considering a transformation given by: 

ଵݔ = 12 ∙ ଵݕ) +  ଶ)                                                                                                                                                                      (2)ݕ
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ଶݔ = 12 ∙ ଵݕ) −  ଶ)                                                                                                                                                                      (3)ݕ

then this problem can be rewritten as: 

,ଵݕ)߮ (ଶݕ = 14 ∙ ଵଶݕ) − ࢞(ଶଶݕ ∈ ܺ                                                                                                                                                         (4) 

Using an iterative procedure, fixing the value of ݕଶ, then the stationary value of ݕଵ can be found my minimizing 
the function given by Eq. (4). By a similar procedure, the stationary value of ݕଶ can be found. 

Consider now a functional, given by: 

ܫ = ඵ[ߙ ∙ ,ݑ)݂ ,ݒ ,௫ݑ (௫ݒ + ߚ ∙ ,ݑ)݃ ,ݒ ,௫ݑ [(௫ݒ ∙ ଵݔ݀ ∙ ଶݔ݀                                                                                              (5) 

s.t. ߲ݔ߲ߙଵ + ଶݔ߲ߚ߲ = 0                                                                                                                                                                             (6) 

ଵݔ߲ݑ߲ + ଶݔ߲ݒ߲ = 0                                                                                                                                                                             (7) 

This functional has stationary conditions given by: 

,ݑ)݂ ,ݒ ,௫ݑ (௫ݒ + ଵݔ߲ߣ߲ = 0                                                                                                                                                          (8) 

,ݑ)݃ ,ݒ ,௫ݑ (௫ݒ + ଶݔ߲ߣ߲ = 0                                                                                                                                                         (9) 

ߙ ∙ ቈ߲݂߲ݑ − ଵݔ߲߲ ቆ ௫భቇݑ߲݂߲ − ଶݔ߲߲ ቆ ௫మቇݑ߲݂߲ + ߚ ∙ ቈ߲߲݃ݑ − ଵݔ߲߲ ቆ ௫భቇݑ߲߲݃ − ଶݔ߲߲ ቆ ௫మቇݑ߲߲݃ + ଵݔ߲ߦ߲ = 0                                (10) 

ߙ ∙ ቈ߲݂߲ݒ − ଵݔ߲߲ ቆ ௫భቇݒ߲݂߲ − ଶݔ߲߲ ቆ ௫మቇݒ߲݂߲ + ߚ ∙ ቈ߲߲݃ݒ − ଵݔ߲߲ ቆ ௫భቇݒ߲߲݃ − ଶݔ߲߲ ቆ ௫మቇݒ߲߲݃ + ଶݔ߲ߦ߲ = 0                                  (11) 

Also, consider that the boundary conditions for this problem are chosen so that the set of equations (8)−(11) 
has the solution ݔ)ߙଵ, (ଶݔ = 0 and ݔ)ߚଵ, (ଶݔ = 0, while ݔ)ݑଵ, ,ଵݔ)ݒ ଶ) andݔ  .ଶ) have nontrivial solutionsݔ

Now, consider the following change of variables: 

ߙ = 12 ∙ ଵݑ) −  ଶ)                                                                                                                                                                     (12)ݑ

ߚ = 12 ∙ ଵݒ) −  ଶ)                                                                                                                                                                     (13)ݒ

ݑ = 12 ∙ ଵݑ) +  ଶ)                                                                                                                                                                     (14)ݑ

ݒ = 12 ∙ ଵݒ) +  ଶ)                                                                                                                                                                      (15)ݒ

Using Equations (6) and (7), it is possible to show that: 
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ଵݔଵ߲ݑ߲ + ଶݔଵ߲ݒ߲ = 0                                                                                                                                                                          (16) 

ଵݔଶ߲ݑ߲ + ଶݔଶ߲ݒ߲ = 0                                                                                                                                                                          (17) 

The functional given by Eq. (5) has a saddle point and it is known that in the stationary condition ݔ)ߙଵ, (ଶݔ = 0 
and ݔ)ߚଵ, (ଶݔ = 0. By applying Equations (12)−(15) in Equation (5): 

ܫ = 12 ∙ ඵ (ݑଵ − (ଶݑ ∙ ݂ ൬12 ∙ ଵݑ) + ,(ଶݑ 12 ∙ ଵݒ) + ,(ଶݒ 12 ∙ ଵݑ) + ,ଶ)௫ݑ 12 ∙ ଵݒ) +  ଶ)௫൰ݒ

ଵݒ)+         − (ଶݒ ∙ ݃ ൬12 ∙ ଵݑ) + ,(ଶݑ 12 ∙ ଵݒ) + ,(ଶݒ 12 ∙ ଵݑ) + ,ଶ)௫ݑ 12 ∙ ଵݒ) + ଶ)௫൰൨ݒ ∙ ଵݔ݀ ∙  ଶ                              (18)ݔ݀

then an iterative procedure can be used to find the stationary condition of the saddle point: 

• set the values of ݑଶ and ݒଶ at an initial given profile ݑଶ() and ݒଶ(); 
• keep ݑଶ() and ݒଶ() fixed, then minimize the functional in Equation (18) with respect to ݑଵ and ݒଵ, satisfying 
the restriction given by Equation (16), to get ݑଵ() and ݒଵ(); 
• make ݑଶ(ାଵ) = ଶ(ାଵ)ݒ ଵ() andݑ =  ;ଵ()ݒ
• repeat until ቚݑଵ(ାଵ) − ଵ()ቚݑ ≤ ଵ(ାଵ)ݒand ቚ ߝ − ଵ()ቚݒ ≤  .ߝ

In this iterative procedure, the values of ݑଶ and ݒଶ are updated using the knowledge that in the stationary point ߙ = 0 and ߚ = 0, which implies that ݑଶ = ଶݒ ଵ andݑ =  ଵ. In order to have good convergence, a relaxationݒ
factor ߱ can be used as follow: 

ଶ(ାଵ)ݑ = (1 − ߱) ∙ ଶ()ݑ + ߱ ∙  ଵ()                                                                                                                                      (19)ݑ

ଶ(ାଵ)ݒ = (1 − ߱) ∙ ଶ()ݒ + ߱ ∙  ଵ()                                                                                                                                      (20)ݒ

Finding the stationary value of Equation (18), satisfying restrictions (16) and (17), is equivalent to solving the 
set of differential equations given by (7)−(9). 

2.2 Mathematical Model 

General mass and momentum balance equations for single fluids can be found in Bird et al (2002), while for 
two phases flow can be found in Torvik and Svendsen (1990), and Grienberger and Hofmann (1992). 
The fluid dynamic model considers a general heterogeneous system with two phases, which could be gas-
solid, liquid-solid, gas-liquid, or liquid-liquid (immiscible). These two phases here are designated by ݅ = 1,2. 
The equations for the steady state isothermal two phase flow in cylindrical coordinates with axi-symmetry (r, z) 
are given by: 
 
- Volumetric fraction balance: ߝଵ + ଶߝ = 1                                                                                                                                                                                (21) 

 
- Mass balance for ݅ = ݎ1 :1,2 ∙ ݎ߲߲ ݎ ∙ ߩ ∙ ߝ ∙ ݒ − ݎ ∙ ܦ ∙ ݎ߲߲ ߩ) ∙ )൨ߝ + ݖ߲߲ ߩ ∙ ߝ ∙ ௭ݒ − ܦ ∙ ݖ߲߲ ߩ) ∙ )൨ߝ = ଵߦ                                           (22)ߦ + ଶߦ = 0                                                                                                                                                                                (23) 

If there is no mass transfer between the phases, then ߦ = 0. 
 
- Momentum balance for ݅ = 1,2: 
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ݎ1 ∙ ݎ߲߲ ݎ) ∙ ߩ ∙ ߝ ∙ ݒ ∙ (ݒ + ݖ߲߲ ߩ) ∙ ߝ ∙ ௭ݒ ∙ (ݒ = ߩ+ ∙ ߝ ∙ ݃ + ߦ ∙ ݒ + ܨ +  ܮ

ߝ− ∙ ݎ߲߲ + ݎ1 ∙ ݎ߲߲ ݎ ∙ ߤ ∙ ߝ ∙ 2 ∙ ݎ߲ݒ߲ ൨ − ߤ ∙ ߝ ∙ 2 ∙ ଶݎݒ + ݖ߲߲ ߤ ∙ ߝ ∙ ൬߲ݒ߲ݖ + ݎ௭߲ݒ߲ ൰൨                                     (24) 1ݎ ∙ ݎ߲߲ ݎ) ∙ ߩ ∙ ߝ ∙ ݒ ∙ (௭ݒ + ݖ߲߲ ߩ) ∙ ߝ ∙ ௭ݒ ∙ (௭ݒ = ߩ+ ∙ ߝ ∙ ݃௭ + ߦ ∙ ௭ݒ + ௭ܨ +  ௭ܮ

ߝ− ∙ ݖ߲߲ + ݎ1 ∙ ݎ߲߲ ݎ ∙ ߤ ∙ ߝ ∙ ൬߲ݒ߲ݖ + ݎ௭߲ݒ߲ ൰൨ + ݖ߲߲ ߤ ∙ ߝ ∙ 2 ∙ ݖ௭߲ݒ߲ ൨                                                                    (25) 

For a vertical pipe, ݃௭ = −݃. For a horizontal pipe, both ݃௭ and ݃ may be neglected. 
When the flow is in laminar regime, the velocity in the previous equations is the actual velocity, while the 
viscosity is just the viscosity for a Newtonian fluid, ߤ. However, when the flow is in turbulent regime, the 
velocity is an average over time fluctuations, even when the model is for permanent flow, and the viscosity is 
an effective viscosity given by: ߤeff = ߤ +  (26)                                                                                                                                                                           (௧)ߤ

The turbulent viscosity, ߤ(௧), can be calculated using different turbulence models, such as ݇ −  ,Hillmer et al) ߝ
1994). In this work, it is considered a zero order turbulence model (Menzel et al, 1990; Chen et al, 1995), for 
the sake of simplicity, since in this case ߤ(௧) is a function of local position and not on local velocity profiles. 
However, in zero order models the turbulent viscosity depends on the wall shear stress. 
The diffusivity of one phase into another (ܦ) affects the distribution of the volume fractions of the phases 
inside the reactor volume (ߝ), even if they are immiscible. It can be shown that ܦ =   and that these valuesܦ
may be variable. It can also be shown that for turbulent flow the Schmidt number is equal to 1, so that: 

(௧)ܦ = ߩ(௧)ߤ = ߩ(௧)ߤ                                                                                                                                                                     (27) 

The force between the phases can be described by: ܨ = ܥ ∙ ߝ ∙ ߝ ∙ ൫ݒ −  ൯                                                                                                                                               (28)ݒ

௭ܨ = ܥ ∙ ߝ ∙ ߝ ∙ ൫ݒ௭ −  ௭൯                                                                                                                                               (29)ݒ

where it can be seen that ܨ = ௭ܨ  andܨ− =   may be considered either a constant orܥ ௭. The value ofܨ−
a function of radial position only, and it can have different values for different systems. 
The transversal lift force is also known as the Magnus force. Here it is considered in the most general case, 
where both phases can affect each other. In the case considered in this work, where the velocities have only 
components on ݎ and ݖ directions, it results in: ܮ = +0.5 ∙ ܥ ∙ ߝ ∙ ߝ ∙ ൫ݒ௭ − ௭൯ݒ ∙ ቈߩ ∙ ൬߲ݒ߲ݖ − ݎ௭߲ݒ߲ ൰ + ߩ ∙ ቆ߲ݒ߲ݖ − ݎ௭߲ݒ߲ ቇ                                                   (30) 

௭ܮ = −0.5 ∙ ܥ ∙ ߝ ∙ ߝ ∙ ൫ݒ − ൯ݒ ∙ ቈߩ ∙ ൬߲ݒ߲ݖ − ݎ௭߲ݒ߲ ൰ + ߩ ∙ ቆ߲ݒ߲ݖ − ݎ௭߲ݒ߲ ቇ                                                   (31) 

The boundary conditions for this model are the usual ones, both for the velocities at the inlet, and for the 
centre and the walls. 

2.3 Numerical Implementation 

The proposed method was implemented in GAMS, solved with the CONOPT3 solver. For a single-phase fluid, 
Equation (18) is used, while for two phases fluid flows a more general functional is used that results in the 
model described in Section 2.2. The derivatives were calculated using second order finite differences, while 
the integrals were calculated using the trapezoidal rule, which for cylindrical coordinates is given by: 

න ݕ ∙ ݔ ∙ ݔ݀ = 6ݔ∆ ∙ ݕ] ∙ (2 ∙ ݔ + (ାଵݔ + ାଵݕ ∙ ݔ) + 2 ∙ ାଵ)]௫శభ௫ݔ                                                                            (32) 
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3. Results and discussion 
Two case studies were solved using the proposed method. The first case considers a two-dimensional laminar 
flow of a single fluid in a pipe and the results were compared with an analytical solution. The second case 
considers a one-dimensional turbulent laminar flow in a gas-liquid column and the results were compared with 
a numerical solution using the finite volume method. 

3.1 Two dimensional laminar flow for a single fluid 

The laminar flow of a single fluid in a pipe was calculated using the proposed method. The equations were 
written in a dimensionless form, so that only two parameters were required to characterize the flow, the 
Reynolds number and the relation of length to radius of the pipe (ܮ ܴ⁄ ). Table 1 shows the results for the axial 
velocity, using 50 intervals in the radial direction and 20 intervals in the axial direction, for different radial and 
axial positions. In order to have good convergence, a relaxation factor ߱ = 0.05 was used. A very low 
Reynolds number was used, so that a fully developed flow was achieved with a short pipe length. The results 
were compared with an analytical solution presented by Guirardello (2015), with good results. Also, the 
parabolic profile at a fully developed flow was achieved, with differences between analytical and numerical 
solutions due to the size of the interval used in the radial direction. 

Table 1. Axial velocity ݒ௭ ⁄ݒ  for Re=2 and L/R=4 

r/R z/L=0.00 z/L=0.05 z/L=0.10 z/L=0.25 z/L=0.50 z/L=1.00 

0.00 1.000000 1.126244 1.401038 1.927852 2.000300 2.000106 
0.10 1.000000 1.126709 1.400182 1.911969 1.980294 1.980112 
0.20 1.000000 1.128069 1.397136 1.863589 1.920278 1.920127 
0.30 1.000000 1.130163 1.390264 1.780616 1.820252 1.820150 
0.40 1.000000 1.132552 1.376165 1.659878 1.680220 1.680175 
0.50 1.000000 1.134087 1.348304 1.497709 1.500186 1.500192 
0.60 1.000000 1.131739 1.294143 1.290831 1.280150 1.280180 
0.70 1.000000 1.117222 1.189069 1.037201 1.020104 1.020118 
0.80 1.000000 1.065997 0.983477 0.735303 0.719987 0.720019 
0.90 1.000000 0.893763 0.576895 0.382547 0.380284 0.380148 
1.00 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

3.2 One dimensional turbulent flow for two fluids 

The turbulent flow of a gas-liquid bubble column was calculated with the proposed method. The liquid and the 
gas phases are fed at the bottom of a vertical column. Since only a one-dimensional model was solved, in the 
radial direction, the length of the column was considered to be long enough for a fully developed flow. 
The column considered had a radius of 30 cm. The liquid mass flow was 400 g/s, with density ߩ = 0.70 g/cmଷ 
and viscosity ߤ = 0.0090 g. cmିଵ. sିଵ. The gas mass flow was 10 g/s, with density ߩ = 0.0012 g/cmଷ and 
viscosity ߤ = 0.0002 g. cmିଵ. sିଵ. The turbulent viscosity and mass diffusivity were calculated using a 
correlation proposed by Chen et al (1995) and Menzel et al (1990), with ݇ = 0.1 and ௪ܲᇱ ߩ = 1000 cmଶ sଶ⁄⁄ , 
considering an homogeneous flow for the gas bubbles. The drag force between phases was calculated using ܥ = 50 g. cmିଷ. sିଵ. The Magnus force was calculated considering ܥ = −1. 
This case study was solved with the variational method, using 20 intervals in the radial direction and a 
relaxation factor ߱ = 0.50 for convergence, using GAMS and CONOPT3. It was also solved with the finite 
volume method, using 20 intervals in the radial direction, using EXCEL. 
Nonlinear optimization problems usually are sensitive to initial estimates in some variables, so in order to 
compare the two methods, the liquid and gas hold-ups in the variational method were fixed using the same 
values of hold-ups found in the finite volume method. 
Results are presented in Table 2, where the 2nd through 6th columns refer to the numerical solution using the 
finite volume method, while the 7th and 8th columns refer to the numerical solution using the variational 
method. The recirculation pattern for the liquid phase is easily visible, were the liquid axial velocity is negative 
next to the column wall, indicating a descendent flow, and positive in the middle of the column. This 
recirculation pattern in the liquid phase is a phenomenon that is observed experimentally in two phases flow 
(Chen et al, 1995; Menzel et al, 1990). 
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Table 2: Comparison between finite volume and variational methods (all units in CGS). 

,ݒ  ௭,ݒ  ௭,ݒ  ݎ  ,ݒ  ߝ  ௭,ݒ  ௭,ݒ 
0.0 2.207 15.957 0.00000 0.00000 0.7783 2.427 16.177
1.5 2.185 15.935 0.00018 -0.00062 0.7783 2.401 16.150
3.0 2.120 15.869 0.00035 -0.00122 0.7783 2.320 16.068
4.5 2.013 15.762 0.00050 -0.00175 0.7783 2.200 15.948
6.0 1.872 15.620 0.00063 -0.00220 0.7784 2.048 15.795
7.5 1.703 15.450 0.00073 -0.00255 0.7784 1.868 15.615
9.0 1.512 15.258 0.00080 -0.00280 0.7785 1.667 15.413

10.5 1.308 15.053 0.00084 -0.00296 0.7785 1.452 15.197
12.0 1.095 14.839 0.00086 -0.00302 0.7786 1.228 14.971
13.5 0.881 14.625 0.00085 -0.00300 0.7787 1.000 14.743
15.0 0.671 14.413 0.00083 -0.00292 0.7787 0.775 14.517
16.5 0.469 14.210 0.00079 -0.00278 0.7788 0.556 14.297
18.0 0.278 14.019 0.00074 -0.00260 0.7788 0.346 14.086
19.5 0.103 13.842 0.00067 -0.00236 0.7789 0.149 13.888
21.0 -0.055 13.683 0.00059 -0.00208 0.7789 -0.034 13.704
22.5 -0.191 13.546 0.00049 -0.00174 0.7789 -0.200 13.538
24.0 -0.301 13.436 0.00037 -0.00130 0.7790 -0.345 13.392
25.5 -0.376 13.361 0.00020 -0.00069 0.7790 -0.466 13.271
27.0 -0.400 13.336 -0.00009 0.00033 0.7790 -0.558 13.179
28.5 -0.332 13.407 -0.00079 0.00278 0.7789 -0.613 13.136
30.0 0.000 0.000 0.00000 0.00000 0.7788 0.000 0.000

4. Conclusions 
The proposed method showed very good results, being able to give reliable and accurate results for two case 
studies, having good agreement with other methods. 
One interesting feature of the variational method is that the pressure field does not need to be explicitly 
calculated, since it is the Lagrangian multiplier associated with the continuity equation. The pressure can be 
found later, after the velocity profiles are calculated, using GAMS and calling for the marginal value of that 
restriction after a ‘solve’. In this work all physical properties were considered constant, but for a problem where 
physical properties change with pressure this variation can be easily computed after each loop of the iterative 
procedure. 
The numerical application of the variational method still needs some improvement, due to some numerical 
difficulties, related to terms with different orders of magnitude and with initial estimates in the optimization. 
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