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The primary energy mix forecasted for the future shows that growth rates will be the highest for renewable 
energy sources but, in absolute terms, fossil fuels will remain dominant. Among them, natural gas is the most 
attractive due to the advantages it offers in terms of environmental impact. This has recently contributed to the 
increased demand for natural gas and to the interest in developing those reserves that were left undeveloped 
in the past because of their high acid gas (particularly CO2) content. This has driven the recent research 
towards novel technologies that are suitable for the production of these gas fields. These novel technologies 
are based on low-temperature/cryogenic separation methods, which produce a purified natural gas stream at 
a temperature much lower than that reached when conventional technologies are used for acid gas removal. 
In addition to the key role played by natural gas, it is important to also take into account the one played by 
liquefied natural gas, which represents a valuable alternative to the common method for natural gas 
transportation via pipelines to reach the utilization zones. Currently, all the natural gas liquefaction 
technologies are developed for a natural gas stream coming from a conventional purification process that 
produces a purified stream at about ambient temperature. Considering the recent development of low-
temperature/cryogenic natural gas purification technologies, it is important to study liquefaction cycles so that 
they can be applied to a purified natural gas stream at low/cryogenic temperatures.  
This work deals with this study and aims at adapting the Single Mixed Refrigerant (SMR) liquefaction process 
currently used to liquefy a natural gas stream at ambient temperature, so that it can be applied to a purified 
natural gas stream at low/cryogenic temperatures. Simulations have been carried out in Aspen Hysys® V9.0 
in order to adjust the composition and flowrate of the mixed refrigerant depending on the conditions of the 
purified natural gas stream that undergoes the liquefaction process. 

1. Introduction 
The rising concern about climate has contributed to the change the world of energy is experiencing today. A 
key player in this transition towards lower carbon sources is natural gas (NG), which is the most attractive 
among fossil fuels due to the advantages it offers in terms of environmental impact. The composition of NG 
can vary widely, depending on the extraction site. Among the other characteristics that define its quality, the 
content of acid gases (mainly CO2 and H2S) is a key one, since it affects the choice of the acid gas removal 
(AGR) process. Indeed, several technologies are currently available for NG purification (De Guido et al., 2017) 
and each of them has advantages and disadvantages. In particular, considering the most widespread 
technology (i.e., chemical absorption by amines solutions), the main drawback is related to the need for 
solvent regeneration that becomes very expensive if the content of the acid gas in the raw NG stream is high 
(above about 10-15 mol%).  
Since the increased demand for natural gas has led to the interest in developing those natural gas reserves 
that were left undeveloped in the past because of their high acid gas (particularly CO2) content, this has driven 
the recent research towards novel technologies that are suitable for their production. These novel 
technologies are based on low-temperature/cryogenic separation methods, which are also of interest for 
upgrading biogas to biomethane (Pellegrini et al., 2018). Three of them, which are based on distillation, are 
reported in Table 1: the Ryan-Holmes process (Holmes and Ryan, 1982), the DCCDTM process (Pellegrini et 
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al., 2016), and the CFZTM process (Valencia et al., 2014). As shown in Table 1, the main difference between a 
conventional amine absorption technology and a low-temperature one lies in the temperature of the purified 
gas stream that is, then, sent to the liquefaction unit in case of LNG production. Such a temperature is close to 
the ambient one in the conventional case, and it is of about -90 °C in the case of low-temperature AGR 
technologies. The synergy between a low-temperature AGR technology and the downstream liquefaction 
process (Pellegrini et al., 2019) increases the interest in these novel technologies. 

Table 1: Temperature and pressure of the NG stream purified by means of different AGR technologies 

Technology T, °C P, bar Literature source 
Amine absorption 32 50 Kohl and Nielsen (1997) 
Ryan-Holmes -86 41 Holmes and Ryan (1982) 
DCCDTM -87 40 Pellegrini (2014) 
CFZTM (pipeline-quality) -89/-86 39/42 Valencia et al. (2014) 
CFZTM (LNG-quality) -90 37 Valencia et al. (2014) 

 
In the case of LNG production, the CO2 content must be reduced to 50 ppm (Berstad et al., 2012) and the 
purified NG stream must be sent to the liquefaction unit. All the liquefaction technologies currently available 
have been designed to liquefy a NG stream coming from a conventional AGR process and, thus, at a 
temperature close to the ambient one. The current interest in low-temperature AGR technologies requires to 
rationalize the liquefaction process in order to make it suitable to treat a NG feed stream at low temperature. 
To the authors’ knowledge, this issue has not been addressed in the literature yet. Therefore, this work 
presents a preliminary analysis dealing with the study of the liquefaction process by means of the Single 
Mixed Refrigerant (SMR) technology applied to a purified NG stream obtained from both a conventional AGR 
process and from a novel one based on low-temperature distillation. The two case studies will be denoted in 
the following by “conventional” and “low-temperature”, respectively. Simulations have been carried out in 
Aspen Hysys® V9.0 (AspenTech, 2016) to adjust the composition and the flowrate of the mixed refrigerant 
(MR), depending on the conditions of the purified NG stream that undergoes the liquefaction process. 

2. Methods 
2.1 Simulations 

For the low-temperature case study, a methane gas mixture containing 50 ppm CO2 has been considered. A 
binary mixture of the two components has been taken into account considering that, if hydrocarbons heavier 
than methane are present in the raw NG feed stream, they are recovered at the bottom of the distillation 
tower, together with CO2. For comparison purposes, the same binary mixture has been also considered in the 
conventional case study. The two streams differ for the temperature set equal to 32 °C and -87 °C, 
respectively, in the conventional and low-temperature case study (Table 2). Moreover, a pressure of 50 bar 
and 40 bar has been considered in each case (Table 2), taking into account the typical operating conditions of 
the upstream AGR unit. A mass flowrate of 1 kg/h has been considered for the NG stream entering the 
liquefaction unit so that the resulting compression power for unit flowrate corresponds to the specific power 
required for NG liquefaction. The optimization effort in this study regards the SMR liquefaction technology: it 
has been selected since it is the simplest one and was believed to be suitable for beginning the analysis that 
represents the scope of this work. The scheme is illustrated in Figure 1. 
The SMR liquefaction process employs a single cycle with a mixture of N2 and hydrocarbons (typically, 
methane, ethane and propane) as refrigerant. Like all systems that use a mixture of refrigerant components 
and, thus, can be tailored to the specific application, it is considered as the most flexible of all the liquefaction 
systems. Indeed, the refrigerant can easily be adjusted for changes in feed conditions while the plant is in 
operation, contrarily to other liquefaction processes that make use of pure refrigerants and can only alter its 
flowrate. Moreover, the use of a mixture of refrigerant components allows obtaining a better match between 
the warming and cooling curves, increasing the cycle efficiency. The SMR process involves a reverse Rankine 
cycle, in which the refrigerant passes through some basic steps. As shown in Figure 1, the MR undergoes an 
inter-refrigerated compression train (4 stages) used to rise its pressure from 1.3 bar to the maximum pressure 
reached in the process. Then, it is partially condensed, prior to entering the main cryogenic heat exchanger 
(MCHE). The MCHE represents the heart of the process and it is where refrigeration and liquefaction of NG 
take place. In it, the MR is totally condensed before being flashed across an expansion valve, which causes a 
further drop in its temperature. Refrigeration for condensing and sub-cooling the NG feed is provided by the 
vaporizing MR (cold fluid), which is recovered to be compressed again (the stream “Out of MR from HE” has 
the same characteristics of the stream “In of MR Comp” entering the first compressor “MR Comp 1” in Figure 
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1, to close the MR cycle). Thus, the MCHE is a multi-stream heat exchanger, with two hot streams (the warm 
MR and NG) and one cold stream (the cold MR). 

Table 2: Composition and conditions of the NG stream entering the liquefaction unit for the two case studies 

 Conventional Low-temperature 
Temperature, °C 32 -87 
Pressure, bar 50 40 
Mass flowrate, kg/h 1 1 
Composition, mol/mol   
    Methane 0.99995 0.99995 
    CO2 0.00005 0.00005 

 

 

Figure 1: Scheme of the SMR liquefaction process 

Considering the two case studies investigated in this work, the composition and the flowrate of the MR have 
been optimized in order to minimize the power required for compression, while guaranteeing there is no 
temperature cross in the MCHE. To avoid that, the minimum approach temperature (MAT) has been 
considered to be the design constraint for the process and set at 3°C, as recommended in the literature (Khan 
et al., 2013) for low-temperature/cryogenic applications. To set-up the simulation, the pressure at the outlet of 
each compressor has been specified at (Khan et al., 2015): 3.205, 7.899, 19.47, and 48 bar. The temperature 
at the outlet of each inter-cooler has been fixed at 40 °C. Based on some information available in the 
literature, the temperature and pressure of the MR stream exiting the valve (“MR Exp Vlv”) have been 
specified, respectively, at -155 °C and 2.3 bar (the temperature difference the MR as hot fluid experiences in 
the MCHE is of about   190 °C in both cases). On the NG side, the inlet stream is completely specified 
(according to the information reported in Table 2). Moreover, the temperature at which it is cooled down has 
been fixed at -149.5 °C and, then, it is depressurized to 1.21 bar (Khan et al., 2015). Pressure drops have 
been neglected in the inter-coolers, whereas they have been assumed to be equal to 1 bar at each side of the 
MCHE. 

2.2 Procedure 

The analysis has been carried out by simulating the process schemes in Aspen Hysys® V9.0 (AspenTech, 
2016), using the Peng-Robinson thermodynamic package. The optimization has been managed through 
MATLAB® (MathWorks Inc., 2018), connecting the two tools using the ActiveXserver functionality. The 
following constrained minimization problem has been solved: 

min               ( )
subject to    3

Power x
MTA C≥ °


 (1) 

to minimize the total compression power required for the MR, subject to the constraint that the MAT is ≥ 3 °C, 
by optimizing the MR composition and flowrate. In the simulations of the liquefaction process, different 
streams for each pure component in the MR (i.e., propane, ethane, methane and nitrogen) have been defined 
(Figure 1) and, then, sent to a mixer (MIX-100) in order to create the refrigerant mixture while changing its 
composition directly from MATLAB®. To find the optimal composition and flowrate of the MR, the grid-search 
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method (Sepiacci et al., 2017) has been adopted and implemented in MATLAB®. It consists of four steps. In 
the first one, the mole fractions of each component in the MR are varied between 0 and 1 (with a step of 0.1) 
and all the non-feasible combinations (i.e., those that don’t add up to unity) are discarded. Assuming a first 
guess value for the total molar flowrate of the MR, the simulation is carried out for all the other feasible 
combinations, thus determining the total compression power and MAT for each of them. In the second step, all 
the combinations that lead to a MAT ≥ 3°C are selected and, for each of them, the total molar flowrate of the 
MR is reduced (with a step size of 0.0001 kmol/h) until the MAT approaches the target value: this ensures the 
total compression power to decrease as well. If no feasible combination is found, then the procedure is 
repeated starting from a higher MR total flowrate. Otherwise, the combination with the minimum compression 
power is chosen. The third and fourth steps are similar to the first and second ones, but allow a further 
refinement of the composition and flowrate of the MR. 

3. Results and discussion 
Table 3 summarizes the best results obtained for the two case studies investigated in this work. Figure 2 
illustrates the hot and cold composite curves (including the two individual warming curves for the sake of 
clarity) for the MCHE in these two cases. 

Table 3: Results of optimization with the grid-search method for the two case studies 

 Conventional Low-temperature 
MR molar flowrate, kmol/h 0.1645 0.1510 
MR composition, mol/mol   
    Propane  0.4700 0.3761 
    Ethane 0.2097 0.2060 
    Methane 0.2401 0.3424 
    Nitrogen 0.0802 0.0755 
MAT, °C 3.017 2.998 
Total compression power, kW 0.5556 0.5271 

 
The shape of the cold composite curve is due to the fact that in the low-temperature region, the evaporation of 
the MR occurs, while at higher temperatures the vapour is superheated. Note that the hot composite curve in 
Figure 2 is made of warm refrigerant (dotted red line) and natural gas (dashed red line), and it varies with both 
the MR composition and the NG inlet conditions. The discontinuity that can be observed in the hot composite 
curve occurs in the region of the MCHE where the natural gas stream is liquefied (around -83 °C and -87.6 °C, 
respectively, in the conventional and in the low-temperature case study). The heat to be removed in the            
low-temperature case study is certainly lower than the one in the conventional case, requiring a lower amount 
of refrigerant to be used (Table 3) and, thus, resulting in a lower total compression power. The little difference 
is due to the fact that the optimization focused on the MR composition and flow rate without taking into 
account other variables, which might lead to larger differences between the power consumptions of the two 
case studies.  

a) b) 

Figure 2: Hot and cold composite curves for the MCHE in the: a) conventional case study; b) low-temperature 
case study 
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It is important to point out that, if the same MR that resulted the best one for the conventional case study were 
used in the low-temperature one, a temperature cross in the MCHE would have occurred. Assuming the same 
composition has to be used while changing the inlet conditions (namely, decreasing the inlet temperature) of 
the NG stream, the liquefaction could be performed by increasing the MR flowrate and, therefore, at a higher 
compression power. As far as the composition is considered, in order to better understand how it affects the 
problem under investigation, Figure 3 and Figure 4 illustrate the power and the MAT in the MCHE, given by 
the colourful scale on the right side of each figure, for different sets of mole fractions of propane (C3), ethane 
(C2) and methane (C1) for the low-temperature case study (the mole fraction of nitrogen in the MR can be 
inferred by subtracting the sum of the other three mole fractions from unity). The molar flowrate of the MR has 
been set equal to the value reported in Table 3 for the low-temperature case study.  

 

Figure 3: Effect of the composition of the MR on the total compression power at fixed molar flowrate, as 
reported in Table 3 for the low-temperature case study (the black filled square corresponds to the optimum in 
Table 3) 

 

Figure 4: Effect of the composition of the MR on the MAT in the MCHE at fixed molar flowrate, as reported in 
Table 3 for the low-temperature case study (the black filled square corresponds to the optimum in Table 3) 
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The pyramidal shape of the two plots is due to the fact that only the feasible mole fractions combinations are 
illustrated. Figure 3 shows that, if the mixed refrigerant is composed of propane only, the total power required 
for compression is minimum (blue circle in Figure 3), which, however, leads to an unfeasible condition due to a 
negative MAT, as shown in Figure 4. On the contrary, if it is composed of N2 only (which also leads to an 
unfeasible condition due to a negative MAT, as shown in Figure 4), it requires the highest compression power 
(bright yellow circle in Figure 3). This can be explained considering that a mixture mainly consisting of N2 and 
methane is able to exchange less latent heat (due to a lower heat of vaporization) and, when it exchanges 
sensible heat, it tends to increment its temperature more than a mixture mainly consisting of propane and 
ethane (due to a lower specific heat). This leads, in turn, to a higher temperature at the outlet of the MCHE 
and, thus, at the inlet of the compression train, resulting in a higher compression power required, which is 
proportional to the temperature at the inlet of the compression train. Of course, these observations regarding 
the power requirement must be coupled with those concerning the feasibility of the heat exchange process 
itself and, therefore, with the analysis of the MAT in the MCHE. As shown in Figure 4, if the MR is composed 
of a pure component the refrigeration process is not feasible because of a temperature cross within the 
MCHE, with the worst case corresponding to the one involving pure N2 as cooling medium. 

4. Conclusions 
Considering the recent interest in novel low-temperature acid gas removal technologies for the purification of 
natural gas and the increasing importance gained by LNG, this work points out the need for adapting the 
liquefaction process so that it is able to treat a NG stream that is at a temperature lower than the typical ones. 
Thus, taking the SMR liquefaction process into account, simulations have been performed in Aspen Hysys® 
and the optimization has been managed through MATLAB® on the basis of the grid-search method. The 
results confirm that, even with a relatively simple liquefaction process, it is not possible to use the same mixed 
refrigerant in a convenient way for liquefaction of a natural gas mixture obtained from different acid gas 
removal units. On the contrary, its composition and flowrate must be adjusted for each case, which results in a 
lower consumption for a natural gas stream that is already available at low-temperature. The problem 
addressed in this work certainly requires further investigation in order to find a method for an overall 
optimization of the liquefaction process and/or to design one more suitable to liquefy a natural gas that has 
undergone a low-temperature acid gas removal process upstream. 
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