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Currently, membrane unit operations are widely applied at industrial level, replacing conventional separation 
systems. Membrane gas separation represents a successful case, with an increasing number of installed 
plants in chemical processes, petrochemical plants and refineries for the production of nitrogen from air, the 
hydrogen separation and recovery and the carbon dioxide separation from natural gas. Owing to the low 
space footprint and low energy consumption, membrane separation is an environmental friendly technique 
that meets the Process Intensification requirements. 
The present study concentrates on the hollow fiber (HF) configuration that is the most used in applications of 
industrial interest. HF modules, having a high membrane packing density, are compact devices with 
thousands of square meters of membrane area per unit of volume.  
The required membranes have an asymmetric structure, in which a thin dense layer performs the separation 
and a porous substructure provides the needed mechanical resistance. The manipulation of the HFs 
morphology, according to a dry-wet spinning process in a pilot plant apparatus, investigating the effect of the 
operating conditions adopted for the spinning on the membrane performance and microstructure, is experi-
mentally examined. Commercially available glassy polymers are used to make a comparison of a conventional 
double orifice spinneret with a triple orifice spinneret. The prepared HF batches are characterized by means of 
a morphological characterization (SEM analysis) and gas permeation rate measurements. 

1. Introduction 
Membrane gas separation is recognized as a valuable alternative to conventional energy-intensive separation 
processes such as distillation or adsorption (Bernardo et al., 2009). Currently, membrane plants are installed 
in different industrial sectors for gas and vapour separation. They cover a wide range of applications such as 
hydrogen recovery in refineries, natural gas sweetening and biogas upgrading, VOC recovery and air 
separation (Bernardo and Clarizia, 2013). The integration of membrane systems with conventional operations 
is also considered to intensify separations for a successfully application at industrial level (Ortiz et al., 2018).  
Typically, hollow fibers (HFs) are widely used as gas separation membranes. In fact, this geometry provides 
different advantages over flat-film and spiral-wound modules, such as a superior membrane packing density, 
which results in high membrane area within compact modules (Mulder, 2003). 
In general, the hollow fiber spinning presents several peculiar parameters that, if properly controlled, lead to 
the desired morphology and consequently tailored transport properties. They can be distinguished in 
chemical-physical and geometric/fluid-dynamic variables. The composition and concentration of the dope and 
bore fluid, the operating temperature are the main chemical parameters that can be varied during the spinning 
process. Instead, the geometric dimensions of the spinneret, the air gap, the dope and bore fluid flow rates are 
some of the main parameters related to the system engineering. 
Consequently, there are different possibilities to tune the membrane performance in the case of HFs with 
respect to flat-sheet membrane configuration.  
In this work, the effect of the above mentioned operation parameters was experimentally evaluated. A careful 
design of the spinning operating conditions for producing different HF batches was adopted in order to 
highlight the existence of synergies among some of them. Commercial glassy polymers (e.g., polyimide and 
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polysulfone), typically applied for the industrial membrane preparation, were adopted. Some guidelines are 
identified, showing the procedures that ensure membranes with a good interplay of gas permeance and 
selectivity. 

2. Materials and methods 
2.1 Materials 

Polysulfone (PSf, Udel® P-3500), was supplied by Solvay (Belgium). The polyimide Matrimid® 5218 was 
received from Huntsman Advanced Materials (Europe). N-methyl-2-pyrrolidone (NMP), supplied by VWR, was 
used as solvent for both polymers. Single permanent gases (e.g., N2, CH4 and CO2) were used for permeation 
tests and purchased from SAPIO (Italy). 

2.2 Membrane preparation 

Different HF batches were spun according to a dry-jet wet technique, using alternatively a double and a triple 
orifice spinneret within the pilot plant described in Figure 1 (Tasselli and Drioli, 2007). 
 

 

Figure 1: Scheme of the pilot plant for the spinning  

The polymers were dissolved in NMP, which has a good compatibility with the coagulation medium (water), 
while its low volatility reduces evaporation losses in the environment. 
The as-spun fibers were immersed in deionized water for 3 days to remove the residual solvent and air-dried 
before their characterisation and use in gas separation. 

2.3 Membrane characterization 

The prepared membranes were characterized measuring their gas permeation rate properties at 25°C and 1 
bar of feed pressure in a fixed-volume/variable-pressure set-up (Clarizia et al., 2018). The gas permeance is 
expressed in GPU (1 GPU = 1×10−6 cm3 (STP)/cm2 s cmHg). The ideal separation factor for a certain gas pair 
is determined as the ratio of individual permeance values. 
The morphology of the membranes was investigated by means of scanning electron microscopy (SEM) on an 
EVO|MA 10 (Zeiss, Italy) instrument. 

2.4 Approach and Methods 

The general approach adopted in this work, was aimed at increasing the gas permeation rates through the 
HFs in order to enhance the productivity, reducing the required membrane area for a fixed flow rate of the 
stream to be treated in the membrane separation system. Therefore, the spinning was carried out 
investigating the role of the following parameters: 

- Dope polymer composition and concentration, 
- Bore fluid (BF) composition and concentration, 
- Temperature, 
- Flowrates ratio (BF/Dope), 
- Spinneret type (double or triple), 
- Spinneret dimensions (cross section ratio, BF/Dope), 
- Air gap. 
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Concerning these parameters, it is noteworthy to underline some points. First, HF preparation requires a 
higher dope concentration with respect to flat-sheet membranes. However, there is a critical concentration for 
attaining viscosity levels suitable to produce self-standing samples. It depends mainly on the dope chemistry 
(e.g., polymer and solvent type), but also on operation conditions. Gelation should be avoided as well. The air 
gap is the distinctive element in dry-wet phase inversion process for HF preparation (Khayet, 2003). It induces 
elongational stresses because of gravity and allows the mass exchange in dry phase before the coagulation 
step. Finally, the use of a triple–orifice as an alternative to traditional double-orifice spinneret provides another 
line that can be fed with a different fluid, thus giving further options to change the membrane microstructure, 
specifically acting on the outer HF region (Bernardo et al., 2019).  

3. Results 
Membranes for gas separation applications require a dense selective layer to perform the separation at a 
molecular level. At the same time, a very thin skin layer is desired to achieve more permeable samples.  
Usually, the structure resulting from a dry-jet/wet spinning is asymmetric, with denser layers on the inner and 
outer surfaces and a porous substructure that acts as mechanical support (Figure 2a). The effective 
permeance of the whole asymmetric structure can be estimated by considering a simplified series model in 
which the different resistances are connected as represented in Figure 2b. Each layer, depending on its 
thickness and microstructure, contributes to the overall resistance offered to the mass transfer. In particular, 
the porous region closer to the skin layers can exert a not negligible role in the measured permeance (Clausi 
et al., 1999). 
 

           

Figure 2: a) Scheme of an asymmetric HF membrane and b) representation of the main transport resistances. 

Typically, a reduced polymer concentration in the dope produces a structure with a loose internal network and 
thus more permeable samples. However, a critical value has to be overcome in order to guarantee a sufficient 
viscosity of the dope solution during spinning. These concentration values will result in significant chain 
entanglement, which aids the formation of dense skin with minimal defects on the hollow fibers (Tai et al., 
1997). The HFs prepared at higher dope concentrations present thicker skin layers and more dense 
substructures, therefore their gas permeation rates are considerably reduced. 
In the case of polysulfone HFs the investigated dope concentration was in the range 30–35 wt.%, while the 
polyimide-based HFs were prepared at a concentration of 24 wt.%. Indeed, the critical concentration for PSf 
was reported to be 26% (Ismail et al., 2017), whereas for Matrimid a lower value is typically reported at room 
conditions. Thus, moving from 35 wt.% to 30 wt.% in terms of PSf dope concentration, a three-fold higher gas 
permeance was achieved, as evidenced in Table 1 for CO2. 

Table 1: Effect of the dope concentration (PSf membranes) 

Membrane  Dope conc. 
 
(wt.%) 

Air gap  
 
(cm) 

BF/Dope 
flow rate ratio 
(-) 

CO2 
Permeance 
(GPU) 

A 35 50 0.8 3.4 
B 30 50 0.8 10.1 

 
At fixed dope concentration, an increase in the dope temperature determines a lower viscosity resulting in 
membranes with a larger permeability, as observed in the case of a lower polymer concentration. In addition, 
at a high temperature a faster inter-layer diffusion occurs during the phase inversion process. In practice, 
increasing the dope solution temperature of 10 °C, moving from 60 °C to 70 °C, an almost doubled CO2 

777



permeance was measured in PSf-based HFs as reported in Table 2. In presence of more volatile solvents, 
high operating temperatures favour also a significant solvent evaporation. 

Table 2: Effect of the temperature (PSf membranes) 

Membrane  Temperature 
 
(°C) 

Air gap  
 
(cm) 

BF/Dope 
flow rate ratio
(-) 

CO2 
Permeance 
(GPU) 

C 60 60 0.6 4.9 
D 70 60 0.6 8.7 

 
The presence of a solvent in the bore fluid, delaying the coagulation time and reducing the dope concentration 
at the interface, can be exploited to modify the structure of the internal skin layer. A change in the bore fluid 
composition (e.g. a mixture of NMP and water) results in very thin inner skin layers, with a consequent 
increase of the gas permeance through these HFs. In the case of the Matrimid-based HFs, the substitution of 
the water as bore fluid with a mixture of NMP and water (60/40 wt./wt) causes a significant increase in CO2 
permeance from 13.3 GPU to 50 GPU, but partially compromising the selectivity.  
After proving the role of the main physical-chemical parameters in spinning process, the effect of engineering 
nature variables was investigated. A reduction in the air gap was effective in increasing the gas permeance in 
the case of PSf HFs. Thus, reducing the air gap from 60 cm to 50 cm and finally to 6 cm, a progressive 
increase in CO2 permeance was measured (Table 3, samples E, A and F). Indeed, varying the air gap, a 
different membrane microstructure during the spinning since different precipitation paths take place on the 
extremal surface of the forming HF. At very low air gap distances, the coagulation on the external side is 
almost instantaneous, producing more open and permeable skin layers. On the contrary, increasing the air 
gap the combined effect of larger velocity, elongational stresses because of gravity and kinetically slower 
phase-separation lead to denser and less permeable skin layers on both inner and outer regions of the HFs. 
This effect is particularly evident when the spinning temperature is increased. However, the air gap influence 
is still more pronounced when a small spinneret is used. Reducing the air gap from 50 cm to 1 cm, an almost 
three-fold higher CO2 permeance was measured (Table 3, samples G and H). By using the same spinneret 
(BF/Dope Cross section ratio = 0.15) and an equiponderal NMP and water mixture as bore fluid, instead of 
pure water, six times more permeable HFs were obtained when decreasing the air gap from 50 cm to 1 cm.  
In this way, it is possible to favourably couple different effects in a synergistic way.  

Table 3: Effect of the air gap (PSf membranes) 

Membrane  Air gap  
(cm) 

BF/Dope 
flow rate ratio 
(-) 

BF/Dope 
Cross section ratio
(-) 

CO2 
Permeance 
(GPU) 

E 60 0.8 0.21 2.3 
A 50 0.8 0.21 3.4 
F 6 0.8 0.21 4.8 
G 50 0.4 0.15 1.2 
H 1 0.4 0.15 3.3 

 
In the case of Matrimid, the reduction of air gap from 50 cm to 1 cm caused an increase in HF selectivity, 
without a significant increase in gas permeance. This is dissimilar than what observed by Clausi and Koros 
(2000) with a similar polymer, probably due to a different weight of internal and external resistances in a 
different membrane morphology.  
Furthermore, an increase in the bore fluid flow rate results in more permeable HFs when the air gap is fixed. 
Using the same spinneret and flow rates ratio (BF/dope), the higher the flow rates for the dope and the bore 
fluid, the greater the spinning velocity and therefore the HF gas permeance (Table 4, samples I and L). The 
lower gas transport resistance arises from thinner dense layers. At the same time, keeping the same flow 
rates, a smaller spinneret produces more permeable HFs owing to larger linear velocities for the dope and 
bore fluid (Table 4, samples I and M). Therefore, smaller spinnerets should be selected since they produce 
thinner HFs that can be packed in more compact modules, but at the same time are also more permeable. 
The resulting membranes will cause significant footprint reductions to treat a fixed stream. In these operation 
conditions, the pretreatment of the feed gas stream is fundamental in order to prevent fiber plugging by 
impurities. 
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Table 4: Effect of the flow rates (PI membranes) 

Membrane  BF 
flow rate  
(g/min) 

BF/Dope 
flow rate ratio 
(-) 

BF/Dope 
Cross section ratio
(-) 

CO2 
Permeance 
(GPU) 

I 3 0.6 0.21 5.1 
L 5 0.6 0.21 10.2 
M 3 0.6 0.15 12.1 

 
The discussed results highlight the fundamental role of the spinning velocity in order to produce more 
permeable samples. Similarly, larger air gap distances produce an increase of the spinning velocities, but the 
predominant role is related to the microstructure evolution due to the solvent-non solvent exchange, as 
reported before in the discussion associated to Table 3.  
The HF spinning, performed with a conventional double orifice spinneret, inevitably causes the formation of 
two opposite skin layers. Therefore, the resulting HFs present a doubled resistance to the mass transport with 
a consequent reduction in the gas permeance. The opportunity of suppressing one of these main resistances 
is significant in order to enhance the productivity.  
Indeed as discussed before, a change in the bore fluid composition, by adding a solvent, can be used to 
suppress the transport resistance located on the inner HF side. However, a thinner internal skin layer can be 
associated to a compromised selectivity. In this case, the role of the external layer is more important. The 
resistances in series model indicate that the presence of an external layer with a low selectivity depresses the 
overall performance besides to reduce the overall gas permeance. 
Typically, the external skin layer formed in a conventional spinneret is not completely selective when working 
at a high air gap in order to increase the spinning velocity.  
A suitable approach to reduce the mass transport resistance is the use of a triple orifice spinneret where an 
additional fluid stream on the external side of the forming HF is involved. When using a triple orifice spinneret, 
a high air gap height is necessary in order to take advantage of the crucial role of the external fluid. In 
particular, at a fixed air gap, a solvent-rich external fluid is capable of suppress the mass transport resistance 
located on the outer side of the membrane, creating a porous surface as confirmed by the SEM analysis 
(Figure 3). As a result, the permeance is improved (from 13.3 GPU to 22 GPU for CO2). In addition, the 
samples produced with the triple orifice spinneret have an enhanced selectivity (up to 35 for CO2/N2) owing to 
a predominant role of the tighter and higher perfect inner layer induced by the big air gap. 
 

       

Figure 3: SEM image of the external surface of a Matrimid HF. a) Conventional spinneret; b) Triple orifice 
spinneret with a solvent-rich external fluid 

4. Conclusions 
Different batches of asymmetric hollow fibers were spun according to the dry-jet/wet phase inversion process 
by using commercial glassy polymers. These HF membranes were prepared for gas separation, investigating 
the role of the main operation parameters that affect the spinning process individually and in synergy.  
The permeation data show as the extrusion velocity is an important variable in HF spinning. Higher flow rates 
for BF and dope allow obtaining more permeable samples as well as small size spinnerets. The dope 
temperature holds a double role in decreasing the viscosity of the dope solution and favouring the 
evaporation/exchange of solvent and non-solvent during the phase separation process.  
Using a conventional double spinneret, low air gap distances are suggested to increase the gas permeation 
rates of the hollow fibers.  
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An advantageous strategy to suppress the external mass transport resistance is the use of triple orifice 
spinneret using a solvent-rich external fluid, whereas the addition of solvent to the bore fluid is helpful in the 
reduction of internal mass transport resistance. However, the triple orifice spinneret is able to produce at the 
same time permeable and selective membranes.  
A proper selection of the spinning conditions and spinneret type results in gas separation HFs having thin skin 
layers, high permeation rates and selectivity coefficients. 
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