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In this work, the impact of network architecture on the natural gas demand and price forecasts task is 
evaluated. Recurrent models such as GRU (Gated Recurrent Units) and LSTM (Long Short-Term Memory 
networks) are investigated to verify that their impressive performance on sequence modeling tasks like audio 
synthesis can be transferred over to this challenging domain. The effect of data decomposition using Empirical 
Mode Decomposition technique is explored. Finally, the effect of the encoder-decoder architecture on model 
performance is evaluated in this work. The results obtained by the different approaches are then compared to 
identify the most appropriate model for the case studies analyzed.  

1. Introduction 
Natural gas represents a highly efficient and low energy intensive fossil fuel in comparison to other sources 
like coal. This energy commodity not only plays a key role as fuel in the residential and commercial heating 
market but also represents an important feedstock for industry and power generation. Over the past decade, 
the combination of different technological advancements including extended-reach directional drilling and 
multi-stage horizontal fracturing has unleashed the enormous potential of the United States as a producer of 
natural gas from shale rocks. The production of dry gas from shale gas and tight oil is expected to continue 
growing in the future and eventually account for more than three-quarters of the natural gas production in 
2050. Long-term consumption is also expected to increase in this period, mostly driven by the industrial and 
electric power demands (EIA, 2018). In this context, natural gas is expected to continue playing a critical role 
in the energy consumption structure of the country in the future. 
From the perspective of gas companies and government, the forecast of natural gas demand is essential to 
plan the long-term operations of the energy sector and to define the most appropriate policies. Incorrect 
demand forecasts can provoke a detrimental effect on the economy of the different players involved in the gas 
supply networks. It could force gas producers to make costly strategic mistakes or consumers to plan 
erroneously. To avoid these unpleasant scenarios, an accurate forecasting methodology needs to be 
developed in order to minimize the errors associated with mismatches between supply and consumption. 
Similarly, the prediction of the natural gas price represents another fundamental decision-making tool for the 
different players involved in the oil and gas industry of the United States. It is highly challenging to get 
accurate predictions of gas price owing to the rapid and unpredictable movements of this exogenous variable 
in the energy market. During the period following the deregulation of gas markets in the late 1980s, prices fell 
to nearly US$ 2.3/MMBtu and remained at that level throughout 1990s. After 2000, gas prices started to 
increase rapidly and continued to be highly volatile. By 2008, the prices averaged $8/MMBtu (four times the 
levels of 1990s). After 2008, it entered a period of decline until the prices dropped to US$2.64/MMBtu (Power 
and Council, 2016). Therefore, a volatile behaviour is a characteristic feature of the natural gas price in the 
country. Although numerous statistical techniques have been developed for the prediction of time series (Box 
and Jenkins, 1970; Cox and Ross, 1976; Bollerslev, 1986; Zhang et al., 1998), machine learning models have 
emerged in the last years as serious contender in this field (Werbos, 1974; Werbos, 1988). Throughout this 
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work, different machine learning algorithms are explored for the prediction of the demand and price of natural 
gas in the United States. In the particular case of gas price, the Empirical Mode Decomposition (Huang et al., 
2003) transformation is incorporated to improve the predictions of the algorithm.   

2. Empirical-Mode Decomposition (EMD) 
In time series analysis, the data/signal varies as a function of time. It carries useful information that can be 
used to forecast the future by studying the patterns in the signal. Over the years, several algorithms have 
been developed to model the signal by exploiting their inherent temporal structure. Some of the most 
successful algorithms like the ARMA class of models capture these patterns only if the data conforms to 
certain expectations. Data generated in the real world do not always meet these expectations and alternative 
algorithms are necessary to model their dynamics.  
One way to simplify the task is to deconstruct the data into sub-parts that can be modeled individually (Hsieh 
et al, 2011). Mathematically, there can be infinite representations of the data but only some of them are 
informative. The best representations are those that help in identifying the underlying trends in the data which 
can later be exploited. 
One of the more informative representations of the data is the frequency-time plot. The Fourier analysis is a 
technique that deconstructs the data into sine and cosine functions each of which has a unique frequency and 
amplitude. This helps to reveal patterns that might not be obvious in the raw data. But these algorithms require 
the data to be stationary and linear which cannot always be satisfied.  
Several techniques have been developed to address the drawbacks of Fourier analysis. All of them try to fit 
the data to predetermined basis functions which fails if the data generating process is complex. A more 
effective approach to this problem is to extract the basis functions directly from the data. The Empirical mode 
decomposition (EMD) (Huang et al., 2003) model does just this. It deconstructs the time series data into 
subcomponents called Intrinsic Mode Functions which are adaptively computed from the data. An intrinsic 
mode function is a signal that satisfies the following two constraints.  
i). the number of extrema and the number of zero crossings must either equal or differ at most by one 
ii). At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the 
local minima is zero. 
The intrinsic mode functions are computed through a sifting process, the details of which are described here 
(Huang et al., 2003). Once the IMFs have been determined, the time series models can be applied to the IMFs 
directly to model the trends in the data (Figure 1). In this work, we use EMD to decompose the price of natural 
gas into 10 different IMFs and a residual signal (Figure 2). 
 

 

Figure 1: The results of empirical mode decomposition on the natural gas price data. Only the top 4 IMF’s are 
shown here. 
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3. Recurrent Neural Networks 
Neural networks (NN) are a class of self-learning algorithms that can be trained to identify patterns from data. 
In the last few years, they have greatly advanced research in areas related to Image object detection, Natural 
language processing, Self-driving cars, Medicine etc. One of the primary assumptions in these models is that 
the data samples used to train them are independent of one another. While this assumption holds true for a lot 
of applications, there are important exceptions. In tasks like image captioning, natural language processing, 
time series forecasting etc. the samples in the dataset are interdependent and assuming otherwise will lead to 
loss of valuable information. 
The recurrent neural networks are a sub-class of neural networks that were built to model the long-range 
dependencies inherent between data samples. While the ordinary NN does not respect the temporal order of 
the input data, the recurrent neural network avoids this problem by having the notion of time built into it. 
Similar to other neural network architectures, the RNNs have a hidden state. But, unlike other models, the 
RNN updates its hidden state after processing each timestep in the input. This ensures that the temporal 
structure of the input sequence is respected.  

3.1 LSTM/GRU 

Although RNNs have the right framework to model temporal data, they suffer from some inadequacies. NNs 
learn by backpropagating the error to modify the network weights. If the network is too large or the number of 
timesteps is too long, the distance over which the error must be transmitted becomes infeasible and the 
network stops learning. This problem is referred to in literature as the vanishing gradient problem.  
The LSTM (Hochreiter et al., 1997) is a modified RNN designed to overcome vanishing gradients. In addition 
to the hidden state, the LSTM carries a cell state that preserves long term information. The LSTM solves the 
problem by having a shortcut path to transmit the gradients back. This unique architecture involves three 
gates. The forget gate decides the contents of the cell state that are relevant to the problem and discards 
everything else. The input gate’s function is to ensure that relevant information in the input is stored in the cell 
state. Finally, the output gate adds the relevant input to the cell state and passes it on to the next timestep. 
This architecture ensures that the gradients are propagated back into the earlier timesteps in the network.  
The GRU (Cho et al., 2014) is another modified RNN cell that is similar to the LSTM in many ways. It differs 
from the LSTM in that it has two gates in place of three. The update gate and the reset gate preserve long 
term information in the data. While the reset gate determines the information that is important to hold over the 
long term, the update gate ensures that this information is added to the hidden state. This architecture 
ensures that the GRU has fewer parameters to train than an LSTM. It saves memory and take less time to 
train. However, on small sequences this typically does not make much of a difference.  

4. Methodology 
The experiments are designed to explore the effect of different RNN cells, architectures and data 
transformation on the forecasting performance of neural networks. The Vanilla RNN cell is the basic structure 
that is used as the baseline for our results. Both GRU and LSTM have been shown in literature to produce 
competitive results in a wide range of fields. Their performance on this time-series task is compared. 
The simplest architecture used in our experiments is the stacked RNN model (Figure 2). Here, the RNN cells 
are layered one over the other with each cell connected to itself and the layer above it. The other architecture 
explored in this work is the Encoder-Decoder (ED) architecture (Cho et al., 2014) model popular in the field of 
natural language processing (Figure 2). Here, the cells are layered one over the other like the basic 
architecture. However, in the central layer, the cells are forced to withhold their connection with the layer 
above them until the last timestep. This ensures that the output of the layer is a summary of the contents of all 
the input timesteps. This summary vector is then fed as an input to all the timesteps in the layer above. Finally, 
the last variable in our experiments is data transformation. We test our models on both the raw data and the 
decomposed signals from EMD. The results of our experiments are shown in Figure 3.  

5. Data Preprocessing 
After the EMD was applied to the original time series, the resulting IMFs were processed using the following 
steps. First, the data was normalized into the [0, 1] range using the min-max scaling formula. Next, it was 
organized into input and output sequences using the lookback window approach. The length of the lookback 
window and the forecast horizon was set to 24. In order to ease the optimization of the RNNs, there was 
partial overlap between the input and the output sequences. The resulting sequences were finally split into 
training, validation and test sets.  
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Figure 2: (left) Overall model structure incorporating empirical mode decomposition (top right) regular stacked 
RNN architecture (bottom right) Encoder-Decoder architecture with summary vector. 

6. RNN Results 
While predicting the natural gas demand, all the models used in the experiments converged to satisfactory 
optimums. This is evident by the low mean squared error (MSE) of the models on the test set predictions 
(Figure 3). They were able to pick up the dynamics of the signal and forecast accurately into the future. The 
mean squared error of the model predictions is shown in figure 3 while the predictions are shown in figure 4.  
The accuracy in predictions can be explained by the regular seasonality of the data and the absence of noise 
or irregular spikes. The slow long-term increase in the mean value of the demand was also picked up by the 
models.  
On the other hand, the prediction of the natural gas price was more challenging. In terms of training time, the 
Vanilla RNN cell took the least time to train. This can be attributed to the fewer weights in the Vanilla RNN cell. 
The GRU has 3x weights as a Vanilla RNN while the LSTM has 4x the weights. However, the training of the 
Vanilla RNN was very unstable with the optimization converging at poor local optimums regularly. The cell was 
unable to capture long term dependencies in the model which is shown in the high MSE produced on the test 
set (Figure 3).  
The LSTM cell exhibited better performance than the Vanilla RNN as expected. It was able to model the low 
frequency IMFs well, but it struggled with the higher frequency IMFs. On the higher frequency IMFs, the 
training was unstable, and the model took several epochs to converge to an acceptable optimum. This was 
surprising because the LSTM has been shown to outperform other models in a variety of tasks and was 
expected to do the same here.  
Finally, the best performance was achieved by the GRU cell. It was able to pick up patterns in all the IMFs 
consistently and the training was stable. It also converged to the optimum faster than the other cells. A 
common theme among all the model predictions was that the predictions were accurate in the initial time steps 
of the test set but grew increasingly erratic as time progressed. This can be attributed to the accumulation of 
error over the prediction horizon. 
In terms of overall architecture, the basic architecture performed poorly on all our experiments. Increasing the 
depth of the model did not improve performance. The ED architecture with the summary vector, on the other 
hand, was able to capture the dynamics of the data. The summary vector is very important to this architecture 
since it ensures that the entire sequence of input is processed before the model makes its predictions. This 
can also explain why the basic architecture failed to model the data properly.  
A notable observation is that the dynamics of the highest frequency IMFs were essentially random and was 
impossible to capture by any of the models. The model predictions reverted to the mean of this IMF to 
minimize the loss function.   
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Figure 3: Mean squared error of the different models. Each model name is in the “RNN cell/architecture/data 
transformation” format with B denoting basic and S denoting summary vector”. The bottom bar of each model 
corresponds to the demand prediction error while the top bar corresponds to the price prediction error. 

  

Figure 4: Predictions of the best performing model on the test set and future forecast for (left) natural gas 
demand and (right) natural gas price.  

7. Conclusion 
In this work, the prediction of natural gas demand and price using recurrent neural network architecture is 
presented. It is shown that the demand can be predicted accurately by all the models since the pattern is 
uniformly repeated. On the other hand, the price of natural gas was accurately predicted by only two models. 
The GRU cell with the ED architecture gave the best results while the LSTM cell with the basic architecture 
came second. Both models performed better when the data was deconstructed using EMD. The accuracy of 
the model predictions decreased with an increase in forecast horizon, which shows that there is still large 
scope for improvements in these models. Future work will be aimed at testing alternative neural network 
structures like the convolutional neural network and attention-based networks to improve the forecasting 
accuracy. In addition, the effect of pre-training on the current models will be investigated.  
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