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Optimization problems with both decision-dependent (endogenous) and decision-independent (exogenous) 
uncertainties are typical in the chemical process industry, especially in planning and scheduling. Stochastic 
programming is a framework for modelling optimization problems that involve uncertainty. Multistage 
stochastic programming (MSSP) is one approach for modelling such problems that consider decisions and 
recourse actions and that involve realization of uncertainties in multiple stages. However, MSSP models grow 
exponentially with increasing number of scenarios and time periods, and they quickly become computationally 
intractable for real-world problems. In this paper, we propose a general primal-bounding framework for large-
scale MSSP models with both endogenous and exogenous uncertainties based on extending the concepts of 
expected value solution from MSSP under exogenous uncertainties. The proposed framework utilizes already 
known information and assumes the expected results for unrealized information to determine current state 
decisions. We applied the framework to solve instances of process-network-synthesis problem, which involves 
both uncertain process yields (endogenous uncertainty) and uncertain demand (exogenous uncertainty) with 
up to 1024 scenarios. The computational results reveal that proposed approach yielded feasible solutions 
within 22.3%, 13.4%, and 6.5% of the true solutions for the first, second and third instances, and obtained 
these solutions up to three order of magnitude faster than solving the original MSSP models. 

1. Introduction 
Stochastic programming is a framework for modelling optimization problems, which involve uncertainties, and 
has been widely used by the process systems engineering (PSE) community. Many engineering applications 
have been considered under uncertainties such as gas and oil field developments (Goel and Grossmann, 
2004), synthesis of process networks with uncertain yields (Goel and Grossmann, 2006; Tarhan and 
Grossmann, 2008), and artificial lift infrastructure planning with uncertain production rate (Zeng and 
Cremaschi, 2017). Multistage stochastic programming (MSSP) is one of the approaches for modeling 
optimization problems with sequential decisions that can be made at discrete stages under both exogenous 
(i.e., decision-independent) and/or endogenous (i.e., decision-dependent) uncertainties in multiple time 
periods. It is a scenario-based method that considers decisions and recourse actions in multiple stages. 
Scenarios represent possible future states of the system and are generated by enumerating combinations of 
possible outcomes of uncertain parameters. In MSSP, non-anticipativity constraints (NACs) prevent decision 
variable values from anticipating unrealized future outcomes. Unfortunately, MSSP models the uncertainty at 
all decision stages and take into account all possible scenarios and their impacts, which cause, typically, an 
exponential growth in the number of NACs making the MSSP model computationally intractable for real-world 
problems due to both space and time complexities. In other words, the model cannot be generated with the 
available RAM in a typical workstation, and the optimal solution cannot be obtained within a reasonable 
duration of time. The structure of MSSP models, more specifically its scenario-based structure, is generally 
exploited to develop algorithms that decompose the original model into smaller sub-problems. Most of these 
algorithms separate the scenario set into different scenario groups, remove NACs between scenario groups, 
and enforce NACs in each scenario group. The sub-problems then include subsets of scenarios and NACs, 
and they are easier to solve than the original MSSP model. The solutions of these sub-problems provide a 
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dual bound for the original model. Then, heuristic and approximation approaches are generally employed to 
generate a feasible solution (and a primal bound), such as a rolling-horizon heuristic approach (Colvin and 
Maravelias, 2009), sample average approximation algorithm (Solak et al., 2010), and generalized knapsack-
based decomposition algorithm (GKDA) (Zeng et al., 2018). Several approaches combine heuristics with 
scenario decomposition algorithms to solve the MSSPs. Recent examples include improved Lagrangean 
decomposition framework (Gupta and Grossmann, 2014), sequential scenario decomposition approach (Apap 
and Grossmann, 2017), and branch and bound algorithm (Christian and Cremaschi, 2018). However, the 
decomposition algorithms still enumerate all scenarios and the corresponding decision variables in sub-
problems. Some of these scenarios may never be realized due to the decisions and recourse actions taken in 
the solution of MSSP problems with endogenous uncertainty.  
To measure the importance of solving a stochastic model, Birge and Louveaux (2011) introduced the value of 
the stochastic solution (ܸܵܵ) for two-stage stochastic models. The ܸܵܵ is obtained as the difference between 
the solution of the two-stage stochastic model (ܵܲ) and the expected value of the solution of the deterministic 
model (ܸܧܧ):	ܸܵܵ	 = 	ܵܲ −  The deterministic model is constructed by replacing all random variables with .ܸܧܧ
their expected values in the two-stage stochastic model, and the ܸܧܧ is calculated by implementing the first-
stage decisions obtained as the solution of the deterministic problem in two-stage stochastic model. Zeng and 
Cremaschi (2019) extended the concepts of expected value solution for MSSPs under only endogenous 
uncertainties and introduced a framework to obtain valid primal bounds, called Absolute Expected Value 
Solution (AEEV), for these problems under certain conditions. The AEEV framework yielded primal bounds 
within 1% of the optimal solutions in solution times up to four orders of magnitude faster than solving the 
original MSSP for the planning problems considered in the paper. 
This paper extends the AEEV framework for large-scale MSSP problems under both endogenous and 
exogenous uncertainties with both continuous and discrete state variables and complete recourse. The 
proposed framework follows the nature of decision-making when planning in multiple decision stages under 
uncertainty as shown in Figure 1. Before any uncertainty is realized, the decision maker utilizes the expected 
results for future unrealized uncertainties to make state decisions. As new information becomes available with 
uncertainty observations, the recourse actions are taken, and the current state decisions are updated by using 
the current information along with expected results for future uncertainties at the current state. The process is 
repeated along the planning horizon (Figure 1). The remainder of the paper introduces a general MSSP 
formulation under endogenous and exogenous uncertainties that is addressed in this paper, explains the 
AEEV framework, defines the case study – process-network-synthesis problem from Apap and Grossmann 
(2017) – used to illustrate the framework, discusses the case study results, and summarizes conclusions.  

 

Figure 1: Natural decision-making process when planning in multiple decision stages under uncertainty  

2. A general MSSP model under endogenous and exogenous uncertainties 
Equations (1)-(10) define a general deterministic equivalent formulation of a MSSP problem with complete 
recourse under endogenous and exogenous uncertainties derived from Zeng and Cremaschi (2019). ܴܲ = ௜,௧,௦൫ܩ௦෍෍݌෍:ݔܽ݉ ௜ܸ,௧, ,௜௦ߠ ,௧௦ߦ ܾ௜,௧௦ , ௜,௧௦ݕ , ௧௦൯௧௜௦ߛ  (1) 

ℎ൫ܾ௜,௧௦ , ௜,௧௦ݕ , ,௧௦ߛ ,௜௦ߠ ௧௦൯ߦ = 0 		∀݅ ∈ ,ܫ ݐ ∈ ܶ, ݏ ∈ ௜,௧௦ܾ)݃ (2) ࡿ , ௜,௧௦ݕ , ,௧௦ߛ ,௜௦ߠ (௧௦ߦ ≤ 0 ∀݅ ∈ ,ܫ ݐ ∈ ܶ, ݏ ∈ ௜,ଵ௦ܾ (3) ࡿ = ܾ௜,ଵ௦ᇲ 									∀݅ ∈ ,ܫ ,ݏ)∀ (ᇱݏ ∈ ௜,ଵ௦ݕ (4) ࡿ = ௜,ଵ௦ᇲݕ 									∀݅ ∈ ,ܫ ,ݏ)∀ (ᇱݏ ∈  (5) ࡿ
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ܾ௜,௧௦ = ܾ௜,௧௦ᇲ 									∀݅ ∈ ,ܫ ݐ∀ ∈ ܶ, ,ݐ)∀ ,ݏ (ᇱݏ ∈ ௜,௧௦ݕ (6) ࢄࡿ = ௜,௧௦ᇲݕ 									∀݅ ∈ ,ܫ ݐ∀ ∈ ܶ, ,ݐ)∀ ,ݏ (ᇱݏ ∈  (7) ࢄࡿ

൦ ܼ௧௦,௦ᇲܾ௜,௧௦ = ܾ௜,௧௦ᇲݕ௜,௧௦ = ௜,௧௦ᇲ൪ݕ ∨ ൣ¬ܼ௧௦,௦ᇲ൧				 ,ݏ)∀ (ᇱݏ ∈ ,ࡱࡿ ݐ∀ ∈ ܶ, ݐ > 1 (8) 

ܼ௧௦,௦ᇲ ⇔ ൫ܾ௜,ଵ௦ܪ , ܾ௜,ଶ௦ , … , ܾ௜,௧௦ , ௜,ଵ௦ݕ , ௜,ଶ௦ݕ , … , ௜,௧௦ݕ ൯	 ,ݏ)∀ (ᇱݏ ∈ ,ࡱࡿ ݐ∀ ∈ ܶ, ݐ > 1 (9) ܾ௜,ଵ௦ , ܼ௧௦,௦ᇲ ∈ {0,1}, ௜,௧௦ݕ , ௧௦ߛ ∈ ℝ										∀(ݏ, (ᇱݏ ∈ ,ࡱࡿ ݐ∀ ∈ ܶ, ∀݅ ∈  (10) ܫ

In Eqs (1)-(10), decision variables are (ܾ௜,௧௦ , ௜,௧௦ݕ ,  ௧௦). We define the decision variables enforced by initial andߛ
conditional NACs as here-and-now decisions (ܾ௜,௧௦ , ௜,௧௦ݕ ). Other decision variables, which are determined by 
scenario specific constraints and are not enforced by any NACs, are defined as recourse actions (ߛ௧௦). The 
model contains deterministic parameters ( ௜ܸ,௧) , exogenous uncertain parameters (ߦ௧௦)  and endogenous 
uncertain parameters (ߠ௜௦) . Sets of exogenous and endogenous scenario pairs are defined as: ܵ௑ ≔ቄ(ݐ, ,ݏ :(ᇱݏ ݐ ∈ ܶ, ௧௦ߦ = ,௧௦ᇲߦ ௜௦ߠ = ቅ	௜௦ᇲห௜∈ூߠ  and ܵா ≔ ቄ(݅, ,ݏ :(ᇱݏ ݅ ∈ ,ܫ ௜௦ߠ = ௜௦ᇲߠ , ௧௦ߦ = ቅ	௧௦ᇲห௧∈்ߦ . Equations (2) and (3) 
are scenario specific inequality and equality constraints. Functions ܩ௜,௧,௦(∙), ℎ(∙), and ݃(∙) can either be linear 
or nonlinear. Initial NACs and NACs associated with exogenous uncertain parameters are given in Eqs (4)-(5) 
and Eqs (6)-(7). Equation (8) is conditional NACs associated with endogenous uncertainty and uses Boolean 
variable, ܼ௧௦,௦ᇲ, which is equal to one if scenarios ݏ and ݏᇱ are indistinguishable at time period ݐ. The values of 
the Boolean variables ܼ௧௦,௦ᇲ  are determined by decisions made in previous time periods using function ܪ൫ܾ௜,ଵ௦ , ܾ௜,ଶ௦ , … , ܾ௜,௧௦ , ௜,ଵ௦ݕ , ௜,ଶ௦ݕ , … , ௜,௧௦ݕ ൯. The RP is the optimum objective function value. 

3. The Absolute Expected Value Solution (AEEV) framework 
In MSSP formulations (Eqs (1)-(10)), the numbers of both variables and constraints increases with number of 
scenarios, and NACs constitute a large portion of the constraints. The AEEV framework is a scenario-free 
approach that generates and solves a series of two deterministic sub-problems based on the observation of 
realized outcomes of uncertain parameters. These sub-problems are deterministic expected value sub-
problems (ݏܸܲܵܧܦ)  and recourse deterministic expected value sub-problems ( ௥௘௖௢௨௥௦௘ݏܸܲܵܧܦ ), whose 
formulations are introduced in Section 3.1. Here-and-now decisions are determined by solving ݏܸܲܵܧܦ, and 
recourse actions are determined by solving ݏܸܲܵܧܦ௥௘௖௢௨௥௦௘ using the solutions of ݏܸܲܵܧܦ. 
3.1 The formulation of deterministic sub-problems 

In ݏܸܲܵܧܦ and ݏܸܲܵܧܦ௥௘௖௢௨௥௦௘, scenario indices and NACs are removed., Indicator variable (ܼ௧௦,௦ᇲ) and Eq (7), 
are dropped from the models. The formulation of ܸܵܧܦ ௡ܲ,௧ for sub-problem ݊ at time ݐ is given in Eqs (11)-
(16). ݉݅݊෍෍ܩ௜,௧ᇲ௘௦௧൫ ௜ܸ,௧ᇲ , ௜௡ߠ ∈ ܷ௡೛ೝ೐, ௧ᇲ௡ߦ ∈ ܷ௡೛ೝ೐, ܾ௜,௧ᇲ , ௜,௧ᇲݕ , ௧ᇲ൯௧ᇲ௜ߛ  (11) 

ℎ൫ܾ௜,௧ᇲ , ௜,௧ᇲݕ , ,௧ᇲߛ ௜௡ߠ ∈ ܷ௡೛ೝ೐, ௧ᇲ௡ߦ ∈ ܷ௡೛ೝ೐൯ = 0 ∀݅ ∈ ,ࡵ ᇱݐ ∈ ௜,௧ᇲܾ)݃ (12) ࢀ , ௜,௧ᇲݕ , ,௧ᇲߛ ௜௡ߠ ∈ ܷ௡೛ೝ೐, ௧ᇲ௡ߦ ∈ ܷ௡೛ೝ೐) ≤ 0 ∀݅ ∈ ,ࡵ ᇱݐ ∈ ௜,௧ᇲܾ (13) ࢀ ∈ ,	௡೛ೝ೐ห௧ᇲழ௧ܨ ܾ௜,௧ᇲ ∈ {0,1}ห௧ᇲஹ௧					∀ݐᇱ ∈ ,ࢀ ∀݅ ∈  (14) ࡵ

௜,௧ᇲݕ ∈ ,	௡೛ೝ೐ห௧ᇲழ௧ܨ ௜,௧ᇲݕ ∈ ℝห௧ᇲஹ௧					∀ݐᇱ ∈ ,ࢀ ∀݅ ∈  (15) ࡵ

௧ᇲߛ ∈ ,	௡೛ೝ೐|௧ᇲழ௧ܨ ௧ᇲߛ ∈ ℝ|௧ᇲஹ௧					∀ݐᇱ ∈ ,ࢀ ∀݅ ∈  (16) ࡵ

In ܸܵܧܦ ௡ܲ,௧, ݊ is the index for the sub-problem, and ݊௣௥௘ represents its parent subproblem. At time period ݐ, 
after solving ܸܵܧܦ ௡ܲ,௧ , new child subproblems, ܸܵܧܦ	 ௡ܲ೎೓೔೗೏,௧௥௘௖௢௨௥௦௘ , are generated if there are uncertainty 
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realizations. A set of ܸܵܧܦ ௡ܲ೎೓೔೗೏,௧௥௘௖௢௨௥௦௘ are generated based on the realized outcomes of uncertain parameters, 
the formulation for ܸܵܧܦ ௡ܲ೎೓೔೗೏,௧௥௘௖௢௨௥௦௘ are shown in Eqs (18)-(22). ݉݅݊෍෍ܩ௜,௧ᇲ௘௦௧൫ ௜ܸ,௧ᇲ , ௜௡ߠ ∈ ܷ௡೎೓೔೗೏, ௧ᇲ௡ߦ ∈ ܷ௡೎೓೔೗೏, ܾ௜,௧ᇲ , ௜,௧ᇲݕ , ௧ᇲ൯௧ᇲ௜ߛ  (17) 

ℎ൫ܾ௜,௧ᇲ , ௜,௧ᇲݕ , ,௧ᇲߛ ௜௡ߠ ∈ ܷ௡೎೓೔೗೏, ௧ᇲ௡ߦ ∈ ܷ௡೎೓೔೗೏൯ = 0 ∀݅ ∈ ,ࡵ ᇱݐ ∈ ௜,௧ᇲܾ)݃ (18) ࢀ , ௜,௧ᇲݕ , ,௧ᇲߛ ௜௡ߠ ∈ ܷ௡೎೓೔೗೏, ௧ᇲ௡ߦ ∈ ܷ௡೎೓೔೗೏) ≤ 0 ∀݅ ∈ ,ࡵ ᇱݐ ∈ ௜,௧ᇲܾ (19) ࢀ ∈ ,	௡ห௧ᇲஸ௧ܨ ܾ௜,௧ᇲ ∈ {0,1}ห௧ᇲவ௧					∀ݐᇱ ∈ ,ࢀ ∀݅ ∈  (20) ࡵ

௜,௧ᇲݕ ∈ ,	௡ห௧ᇲழ௧ܨ ௜,௧ᇲݕ ∈ ℝห௧ᇲவ௧					∀ݐᇱ ∈ ,ࢀ ∀݅ ∈  (21) ࡵ

௧ᇲߛ ∈ ,	௡|௧ᇲழ௧ܨ ௧ᇲߛ ∈ ℝ|௧ᇲஹ௧ ᇱݐ∀			 ∈ ,ࢀ ∀݅ ∈  (22) ࡵ

In ܸܵܧܦ ௡ܲ,௧௥௘௖௢௨௥௦௘, the values of realized endogenous and exogenous uncertain parameters ߠ௜௡, ௧ᇲ௡ߦ  are updated 
corresponding to ܷ௡೛ೝ೐. After obtaining here-and-now decisions and if there are uncertainty realizations, the 
values of realized uncertain parameters ߠ௜௡, ௧ᇲ௡ߦ  in ܷ௡೎೓೔೗೏  are updated with corresponding outcomes. After 
solving ܸܵܧܦ ௡ܲ,௧  and ܸܵܧܦ ௡ܲ,௧௥௘௖௢௨௥௦௘ , here-and-now decisions (ܾ௜,௧ᇲ , ௜,௧ᇲݕ ) are obtained for ݐᇱ ≤ ݐ , and the 
recourse actions are obtained for ݐᇱ <   .ݐ
3.2 Implementation of the AEEV framework 

At initialization, there is only one sub-problem, ݊ = 0. ଴ܷ is initialized to the expected values of all uncertain 
parameters, and ܸܵܧܦ ଴ܲ,ଵ is generated at ݐ = 1. After solving ܸܵܧܦ ଴ܲ,ଵ, we obtain here-and-now decisions for ݐ = 1. At ݐ = 2, the algorithm first determines if there have been any uncertainty realizations. If there are no 
uncertainty realizations, the sub-problem is inherited and solved at ݐ = 2. If there are uncertainty realizations, 
it generates a set of sub-problems based on the realized outcomes of uncertain parameters. For exogenous 
uncertainties, the values of uncertain parameters are realized based on time periods. For endogenous 
uncertainties, the realizations of uncertain parameters are based on here-and-now decisions. The generation 
of sub-problems in the framework are based on both time period (exogenous) and here-and-now decisions 
(endogenous) of previous stages. If an uncertain parameter is observed, the value of that uncertain parameter 
in ܷ௡ takes its realized value for sub-problem ݊. For all other uncertain parameters, ܷ௡ contains their expected 
values. If there are realized uncertain parameters and recourse actions should be taken, ܸܵܧܦ ௡ܲ,௧ିଵ௥௘௖௢௨௥௦௘(ܷ௡,  ௡೛ೝ೐) are generated and solved to determine the recourse actions. The generation andܨ
solution of sub-problems continue until all uncertain parameters are observed or until the end of planning 
horizon. At termination, the framework generates a feasible solution and its corresponding AEEV. 

4. Case Study: A process-network-synthesis problem under uncertain process yields and 
product demands 
The problem involves uncertain process yields (ߠଵ, ଶߠ ) (endogenous uncertainty) and uncertain product 
demands (݀௧ ) (exogenous uncertainty). The goal is to determine optimal design decisions and recourse 
actions in production planning for maximizing the total expected profit from the sales of the final product. In the 
case study considered (Figure 2), the final product A is currently produced using Process 3, which has a 
known and fixed yield. There are two new processes, Process 1 and Process 2, which are available to be 
installed for producing the intermediate product used by Process 3. The yields of Process 1 and Process 2 are 
uncertain, and are assumed to have two possible outcomes, which are only realized once the processes are 
installed and operated. Demand uncertainty is realized at the end of every time period. 
Here-and-now decisions are which processes (indexed by ݅) should be operated (ݕ௜,௧௢௣௘௥) and expanded (ݕ௜,௧௘௫௣). 
Capacity level of expansions (ݓ௜,௧ொா,௦ ∈ ℝஹ଴) and inflow rates of chemicals B, C, and D (ݓ௞,௧௥௔௧௘,௦ ∈ ℝஹ଴, ݇ ={1,2,6}) are also here-and-now decisions. To satisfy the demand at time period ݐ  in scenario ݏ  (݀௧௦ ), the 
recourse actions are inventory level (ݓ௧௜௡௩), purchases (ݔ௧௣௨௥௖௛), and sales (ݔ௧௦௔௟௘௦) of product A. The original 
nomenclature and MSSP formulation of the problem can be found in Goel and Grossmann (2006). The ܸܵܧܦ ௡ܲ,௧௦௬௡௧௛௘௦௜௦ generated and solved by the AEEV framework are obtained using the MSSP formulation and 
are given in Figure 3. 

634



 

Figure 2: The process network for the case study (Goel and Grossmann, 2006) 

In Eq(19) of Figure 3, endogenous and exogenous uncertain parameters ߠଵ, ,ଶߠ ݀௧ are updated using ܷ௡. Here-
and-now decisions (	ݕ௜,௧௘௫௣, ,௜,௧௢௣௘௥ݕ ௞,௧௥௔௧௘,௦ݓ ∈ ℝஹ଴, ݇ = {1,2,6}, ௜,௧ொா,௦ݓ ∈ ℝஹ଴) are fixed for ݐᇱ < ݐ  (Figure 3, Eq(20)) 

using solutions of the parent problems. The ܸܵܧܦ ௡ܲ,௧௥௘௖௢௨௥௦௘  has the same formulations as ܸܵܧܦ ௡ܲ,௧௦௬௡௧௛௘௦௜௦ , 
where the values of here-and-now decisions are fixed to their corresponding values in the solution of ܸܵܧܦ ௡ܲ,௧௦௬௡௧௛௘௦௜௦. The algorithm starts by taking the expected values of the uncertain yields, 0.7 (for Processes 
1 and 2) and uncertain demands for constructing ܸܵܧܦ ଴ܲ,ଵ. After solving ܸܵܧܦ ଴ܲ,ଵ, here-and-now decisions 
are obtained (	ݕ௜,௧௘௫௣, ,௜,௧௢௣௘௥ݕ ௞,௧௥௔௧௘,௦ݓ ∈ ℝஹ଴, ݇ = {1,2,6}, ௜,௧ொா,௦ݓ ∈ ℝஹ଴)  for ݐ = 1 . Based on these here-and-now 
decisions, the algorithm generates the corresponding recourse sub-problems for realized uncertain 
parameters and obtain recourse actions (ݔ௧௣௨௥௖௛, ,௧௦௔௟௘௦ݔ ,௧௜௡௩ݓ ௞,௧௥௔௧௘ݓ ∈ ℝஹ଴, ݇ = {3,4,5,7,8))  for ݐ = 1  for each 
realization. At the next time period, ݐ = 2, all decision variables of the previous time periods and the realized 
uncertain parameters are fixed. The algorithm continues to generate and solve ܸܵܧܦ ௡ܲ,௧௦௬௡௧௛௘௦௜௦  and ܸܵܧܦ ௡ܲ,௧௥௘௖௢௨௥௦௘ .

 

Figure 3: Deterministic problems solved the AEEV framework for process-network-synthesis problem 

We solved three instances of the process-network-synthesis problem using the AEEV framework. The first 
instance is a two time-period 3-stage problem and has 16 scenarios. The second problem has seven time 
periods and has 512 scenarios. The third problem has eight time periods with 1024 scenario due to increased 
demand uncertainty outcomes from a longer planning horizon. The optimum solutions for these instances are 
obtained by solving the deterministic equivalents of the MSSP models. All models and algorithms were 

ݔܽ݉ − ∑ ∑ ൫ݕ݅݅ܧܨ ݌ݔݐ݁, + ܨ ݕܱ݅݅ ݎ݁݌݋ݐ, + ݐ൯݅ܧݐܳ,݅ݓ݅ܧܸ −∑ ∑ ݐ݇݁ݐܽݎݐ,݇ݓܱܸ݇ − ∑ ൫ܿݎݑ݌ݐݔߙ ℎ − ݏ݈݁ܽݏݐݔߚ + ݒ݊ݐ݅ݓߛ ൯ݐ ݁ݐܽݎݐ,3ݓ (1) 		 = ݁ݐܽݎݐ,1ݓ1ߠ ݐ					 ∈ ݁ݐܽݎݐ,4ݓ (2)  ܶ = ݁ݐܽݎݐ,2ݓ2ߠ ݐ					 ∈ ݁ݐܽݎݐ,8ݓ (3)  ܶ , = ݁ݐܽݎݐ,7ݓ3ߠ ݐ					 ∈ ݁ݐܽݎݐ,5ݓ (4)  ܶ = ݁ݐܽݎݐ,3ݓ + ݁ݐܽݎݐ,4ݓ ݐ					 ∈ ݁ݐܽݎݐ,7ݓ (5) 													ܶ = ݁ݐܽݎݐ,5ݓ ݏ, + ݁ݐܽݎݐ,6ݓ ݐ					 ∈ ݒ݊ݐ݅ݓ (6) 		ܶ = ݒ1݅݊−ݐݓ + ݁ݐܽݎݐ,8ݓ) + ܿݎݑ݌ݐݔ ℎ − ݏ݈݁ܽݏݐݔ ݐ					( ∈ ݏ݈݁ܽݏݐݔ (7) ܶ = ݐ݀ ݐ					 ∈ ݌ܽܿݐ,݅ݓ (8)  ܶ = ݌1ܿܽ−ݐ,݅ݓ + ܧݐܳ,݅ݓ ݐ					 ∈ ݁ݐܽݎݐ,1ݓ (9) ܶ ≤ ݌ܽܿݐ,1ݓ ݐ					 ∈ ܶ  (10) 

݁ݐܽݎݐ,2ݓ ≤ ݌ܽܿݐ,2ݓ ݐ ∈ ܶ ݁ݐܽݎݐ,8ݓ (11)   ≤ ݌ܽܿݐ,3ݓ ݐ					 ∈ ܳ݅ܮ (12)  ܶ ܧ ݕ݅ ݌ݔݐ݁, ≤ ܧݐܳ,݅ݓ ≤ ܷ݅ܳ ܧ ݕ݅ ݌ݔݐ݁, ݐ					 ∈ 1݅݊ܮ (13)  ܶ ݓ݋݈݂ ݎ݁݌݋ݐ,1ݕ ≤ ݁ݐܽݎݐ,3ݓ ≤ ݓ݋1ܷ݂݈݅݊ ݎ݁݌݋ݐ,1ݕ ݐ					 ∈ 2݅݊ܮ (14) ܶ ݓ݋݈݂ ݎ݁݌݋ݐ,2ݕ ≤ ݁ݐܽݎݐ,4ݓ ≤ 2ܷ݅݊ ݓ݋݈݂ ݎ݁݌݋ݐ,2ݕ ݐ					 ∈ 3݅݊ܮ (15) ܶ ݓ݋݈݂ ݎ݁݌݋ݐ,3ݕ ≤ ݁ݐܽݎݐ,8ݓ ≤ 3ܷ݅݊ ݓ݋݈݂ ݎ݁݌݋ݐ,3ݕ ݐ					 ∈ ܶ		 (16) ∑ ݕ݅ ݐݐݐ݌ݔ݁ݐݐ, ≥ ݕ݅ ݎ݁݌݋ݐ, ݐ					 ∈ ݕ݅ (17)  ܶ ݎ݁݌݋ݐ, ≥ ݕ݅ ݌ݔݐ݁, ݐ					 ∈ ,1ߠ (18)  ܶ ,2ߠ ݐ݀ 	 ∈ ܷ݊ ݐ,݅ݕ (19)   ݎ݁݌݋′ , ݐ,݅ݕ ݌ݔ݁′ , ݐ,݇ݓ ݁ݐܽݎ′ ቚݐ ′ ݐ> , ݏ,ܧݐܳ,݅ݓ ∈ ܨ݊ , ′ݐ ∈ ܶ, ݅ ∈ ,ܫ ݇ ∈[1,2,6]  (20) 
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implemented in Pyomo and solved using CPLEX 12.6.3 on a standard node of Auburn University Hopper 
Cluster. Data for both instances are available upon request. In first instance, the optimum ENPV is $-
1.104285×106. The AEEV is $-1.42125×106 with 22.3% relative gap. The solution generated by the AEEV 
framework has the same capacity expansion and operation decisions included in the optimum solution, but it 
recommends larger inflow rates than the optimum solution. In second instance, the optimum ENPV is 
$4.7908×106, while the AEEV is $4.1482×106 yielding a 13.4% relative gap. In the largest third instance, the 
optimum ENPV is $7.1548×106, while the AEEV is $6.6907×106 yielding a 6.5% relative gap. The solution 
times for first instance for MSSP and AEEV are both within a second. For second instance, the AEEV 
framework obtains the solution using 46 seconds, while CPLEX takes 4483 seconds to solve the MSSP. For 
the third instance, the AEEV framework obtains the solution using 140 seconds, while MSSP takes 901937 
seconds. 

5. Conclusions 
This paper presents a new framework for solving a class of large-scale MSSP models under both endogenous 
and exogenous uncertainties. The class contains here-and-now decisions and complete recourse actions, 
which can be discrete or continuous. The proposed framework extends the expected value solution approach 
and obtains a feasible and implementable solution for this class of MSSP problems. By generating and solving 
a series of deterministic problems based on the observation of realized outcomes of uncertain parameters, the 
framework has a scenario-free structure and eliminates scenario indices and NACs. The proposed AEEV 
generates a feasible solution and a primal bound for this class of MSSP models relatively quickly. The 
proposed framework has been applied to two instances of process-network-synthesis problem under uncertain 
yields and demands with up to 1024 scenarios. The results reveal that the proposed framework can obtain 
feasible solutions up to three orders of magnitude faster and the quality of the solutions improves as the 
problem becomes larger. 

Acknowledgments 

This work was partially funded by RAPID Manufacturing Institute, the U.S.A. 

References 

Apap, R.M. and Grossmann, I.E., (2017) Models and computational strategies for multistage stochastic 
programming under endogenous and exogenous uncertainties. Comp & Chem Eng, 103, 233-274. 

Birge JR, Louveaux F (2011). Introduction to stochastic programming (Springer Science & Business Media) 
Christian, B., Cremaschi, S. (2018). A branch and bound algorithm to solve large‐scale multistage stochastic 

programs with endogenous uncertainty. AIChE Journal, 64(4), 1262-1271. 
Colvin, M., Maravelias, C. T. (2009). Scheduling of testing tasks and resource planning in new product 

development using stochastic programming. Computers & Chemical Engineering, 33(5), 964-976. 
Goel, V., Grossmann, I. E. (2006). A class of stochastic programs with decision dependent uncertainty. 

Mathematical programming, 108(2), 355-394. 
Goel, V., Grossmann, I. E. (2004). A stochastic programming approach to planning of offshore gas field 

developments under uncertainty in reserves. Comp & Chem Eng, 28(8), 1409-1429. 
Gupta, V., Grossmann, I. E. (2014). A new decomposition algorithm for multistage stochastic programs with 

endogenous uncertainties. Comp & Chem Eng, 62, 62-79. 
Solak, S., Clarke, J. P. B., Johnson, E. L., & Barnes, E. R. (2010). Optimization of R&D project portfolios 

under endogenous uncertainty. European Journal of Operational Research, 207(1), 420-433. 
Tarhan, B., & Grossmann, I. E. (2008). A multistage stochastic programming approach with strategies for 

uncertainty reduction in the synthesis of process networks with uncertain yields. Comp & Chem Eng, 
32(4), 766-788. 

Zeng, Z., Cremaschi, S. (2017). Artificial lift infrastructure planning for shale gas producing horizontal wells. 
Proceedings of the FOCAPO/CPC, Tuscan, AZ, USA, 8-12. 

Zeng, Z., Christian, B., Cremaschi, S. (2018). A generalized knapsack-problem based decomposition heuristic 
for solving multistage stochastic programs with endogenous and/or exogenous uncertainties. Industrial & 
Engineering Chemistry Research, 57 (28), pp 9185–9199. 

Zeng, Z., Cremaschi, S. (2019). A general primal bounding framework for large-scale multistage stochastic 
programs under endogenous uncertainties. Chemical Engineering Research and Design, 141, 464-480. 

636




