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DEM is a useful instrument to successfully design, optimise or simply analyse systems and equipment for 
granular materials in many applications where interparticle forces play a key role. In this paper, a study on the 
calibration of the parameters for the description of interparticle forces in DEM model is presented. Two 
different models for the interparticle forces have been used: a Hertz-Mindlin with Johnson-Kendall-Roberts 
(JKR) cohesive model and a Hertz-Mindlin with Linear cohesion model. By changing the model parameter and 
the time step, the simulations allow to evaluate the adhesion force between two particles. The calibrated value 
of the parameter can be chosen by a comparison between the force estimated, that is evaluated by means of 
the Rumpf-Molerus equation and that dependent on the Hamaker constant, with the simulation. However, it 
seems that both models are not suitable if a low time step is used. In fact, a small change of the model 
parameter could lead to a completely wrong estimation of the interparticle force.  

1. Introduction 
Discrete element method (DEM) is a computational method by which granular flow at an individual particle 
level is analyzed. DEM is used in many fields, such as mining, agriculture, geotechnical, mixing and milling 
applications, in order to design, study and optimise equipments or handle systems for loose granular 
materials. (Coetzee, 2017). All these applications can include interparticle cohesive forces (Obermayr et al., 
2014), which can be caused by: the formation of liquid bridges among the particles (Xu et al., 2017), van der 
Waals and electrostatic forces (Chirone et al., 2018). In order to properly model cohesive materials, it is 
necessary to use a contact model which can capture the effect of cohesion on the mechanical behavior of the 
material. Different modelling approaches and DEM contact models have been proposed in literature to 
reproduce the cohesive forces. Some examples of these contact models are: the DEM mechanical model of 
cohesive soil with parallel bonds between particles (Zhang and Li, 2006), the Cohesive Discrete Element 
Method (Gröger et al., 2003). The main limit of these models is the computational time because it is necessary 
to reproduce in the simulations particles with the same size of the actual ones. An alternative approach is to 
use larger particles and DEM contact models, which can capture the macroscopic cohesive behaviour of the 
powder (Obermayr et al., 2014).  
For the correct application of DEM, the model calibration is a crucial process. Calibration is the process to 
determine a set of DEM input parameters by comparing the powder bulk behaviour from physical experiments 
with the results of the simulations (Salehi et al., 2018). To start a DEM simulation, a contact model has to be 
implemented with the corresponding input parameters. A contact model describes how elements behave when 
they come into contact with each other. Among the most used contact models are: the Hertz-Mindlin (no slip), 
the Hertz Mindlin with JKR (Johnson-Kendall-Roberts) cohesive model (Baran et al., 2009), the Linear 
Cohesion (Romaní Fernández and Nirschl, 2013). The Hertz-Mindlin (no slip) is the default model used in 
EDEM due to its accurate and efficient force calculation. It accounts for the effects of contact of two elastic 
spheres. In this model: the normal force component is based on Hertzian contact theory (Hertz, 1881), the 
tangential force model is based on Mindlin-Deresiewicz work (Mindlin, 1989; Mindlin and Deresiewicz, 1989). 
Hertz-Mindlin with JKR cohesive model is a cohesion contact model that accounts also for the influence of van 
der Waals forces within the contact zone and allows the user to model strongly adhesive systems, e.g. dry 
powders or wet materials. The Linear Cohesion model modifies a certain base contact model (e.g. the Hertz 
Mindlin) by adding a normal cohesion force. The three models are implemented in EDEM by DEM Solutions 
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Ltd. Description of the models is reported in the Edem 2019 documentation. This paper aims at finding the 
effect of the time step length on the values of the contact force in the calibration process of the model. 

2. Materials and methods 
2.1 Experimental 

Glass beads, whose properties are reported in Table 1, have been used to evaluate the contact force. 
 
Table 1 Material properties and interparticle force: ݀௦௩ is the Sauter mean particle diameter;	݀ସ,ଷ is the volume 
mean particle diameter; ߷ is the bulk density ; ܥ is the cohesion; ߶  is the angle of internal friction; ܨ௩ௗௐ,ଵ is 
the van der Waals force estimated from the powder flow properties according the Rumpf-Molerus equation 
(Chirone et al., 2016); A is the Hamaker constant, ݖ is the separation distance and ܨ௩ௗௐ,ଶ	is the adhesion 
force in terms of the Hamaker constant  
 

Material ݀௦௩  
(µm) 

݀ସ,ଷ 
(µm)

߷ 
 (kg m-3) 

 ܥ
(Pa)

߶
(°)

 ௩ௗௐ,ଵܨ
(10-6 N) 

A 
(10-20 J) 

 ݖ
(10-10 m) 

 ௩ௗௐ,ଶܨ
(10-6 N) 

Soda Lime Glass Beads 125 129 2500 75 25 1.07 6.5 2 6.77 
 
A Schulze ring shear tester RST-01.01, equipped with a S-cell (internal volume of the cell of 203.58 cm3; 
external and internal annulus diameter of the lid of 118 and 62 mm, respectively) has been used to infer the 
interparticle force. Standard procedure recommended for the ring shear tester RST-01.01, and the ASTM-
standard (ASTM D6773, 2002) have been followed. Tests at consolidation stresses between 0.4 and 0.7 kg 
have been run and 4-5 shear points have been registered to obtain the corresponding yield locus. To acquire, 
visualize, and record the main data, measured during the shear experiments, a software application, 
developed in the LabVIEW environment (National Instruments), has been used. Additionally, the RSV 95 
software version 2.1.0.1 for the RST-01.01 Schulze shear tester has been used to derive the yield loci, the 
flow function and the other relevant flow properties of the powder. Following the procedure adopted by 
Tomasetta et al. (Tomasetta et al., 2014), for each consolidation condition, the tensile strength, σ୲, can be 
calculated as follows: ߪ௧ =  ߶݊ܽݐܥ

(1) 

where ߪ௧ is the tensile strength, ܥ is the cohesion and ߶ is the angle of internal friction. The Van der Waals 
force is related to ߪ௧ in the following way: ܨ௩ௗௐ,ଵ = ݀௦௩ଶ	௧ߪ 	 1ߝ −  (2) ߝ

where ݀௦௩ is the particle Sauter mean diameter and ߝ is the porosity of the bulk solid. Equation (2) follows the  
the Rumpf (Rumpf, 1970) and Molerus (Molerus, 1975) approach and  relates the tensile strength to the binary 
interparticle forces. Equations (1) and (2) can be used to have an estimate of the interparticle force from 
measured powder flow properties. Another way to make a theoretical estimation of the van der Waals force is 
the following: ܨ௩ௗௐ,ଶ =   (3)	ଶݖ	12	ݎ	ܣ

where ܣ is the Hamaker constant, ݎ is the mean curvature radius at the contact point and ݖ is the separation 
distance. (Israelachvili, 2011) 

2.2 Modeling 

In DEM simulation, two different models have been tried: Hertz-Mindlin with JKR cohesive model and Hertz-
Mindlin with Linear cohesion model. According to the Johnson-Kendall-Roberts theory (Johnson et al., 1971), 
the normal elastic contact force depends on the overlap ߜ and the interaction parameter, i.e. the Surface 
Energy ߛ in the following way: ܨோ = −4ඥܧߛߨ∗	ܽଷ ଶൗ + ∗ܴ	3	∗ܧ	4 	ܽଷ (4) 
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ߜ = ܽଶܴ∗ − ඨ4ܧܽߛߨ∗  (5) 

where:	ܽ is the contact radius, while ܧ∗ and ܴ∗ are the equivalent Young’s Modulus and the equivalent radius, 
respectively, and are defined as: 1ܧ∗ = 1 − ܧଶߥ + 1 − ܧଶߥ  (6) 

1ܴ∗ = 1ܴ + 1ܴ (7) 

where ܧ,	ߥ , ܴ, and ܧ,	ߥ, ܴ,  are the Young’s Modulus, the Poisson ratio and the radius of each sphere in 
contact, respectively. For ߛ =  ோ turns into Hertz-Mindlin normal force. The maximum value of theܨ ,0
cohesion force occurs when particles loose the physical contact. This value is called pull-out force, and it is 
given by: ܨ௨௨௧ = −3	2	  (8) ∗ܴߛߨ	

Therefore, the maximum cohesion force depends on the radius of the particles and on the Surface Energy ߛ. 
In the case of Hertz-Mindlin with the Linear Cohesion, the normal cohesion force takes the form: ܨ௦ =  (9) ܣ	݇

where ܣ is calculated as ܣ = ߨ ×	ሺ2 × 	ܴ ×  ሻ (10)݈ܽݎ݁ݒ	݈ܽ݉ݎ݊	

and ܴ is the radius of the particle considered; the normal overlap is the overlap between two spheres; and ݇ is 
a Cohesion Energy Density with units J m-3. In this case, the interparticle force depends on the radius of the 
particles, the overlap and on the cohesion Energy Density. In the following surface energy and energy density 
will be considered as parameters to be fitted on possible experimental values of interparticle forces measured 
on real powders with non-spherical particles and, therefore, they are not necessarily related to values of 
surface energy and energy density with a strict physical meaning. 

2.3 Simulation 

To find the model that best allows to determine the actual interparticle force, i.e. the van der Waals force, a 
specific simulation procedure has been developed by means of the EDEM software. The simulation consists in 
the following steps (Figure 1): a) generation of two single particles: one particle on a plane and the other one 
on another plane. Both the planes have a central hole to block the particle in a defined position. Moreover, the 
planes are exactly one on the other; b) downward movement of the upper plane on the lower one, at a 
distance such that the upper particle just touches the other particle; c) Upward movement of the upper plane 
to a defined height. 
 

Figure 1 Different steps in the EDEM simulation to evaluate the interparticle force 

A number of simulations have been carried out with EDEM with both the models. The bulk and the equipment 
material properties used are those reported in Table 2. In the first case, in which the Hertz-Mindlin with JKR 
cohesive model was considered, in the different simulations two parameters have been changed: the time 

a b c
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step and the Surface Energy. In particular, the Surface Energy, was changed between 0 and 500 J m-2.  In the 
second case, in which the Hertz-Mindlin model with Linear cohesion was assumed, the time step and the 
cohesion Energy Density have been changed. The interparticle force has been evaluated as the constant 
value of the maximum normal contact force between the particles, once the upper plane has reached a certain 
distance with respect to the lower plane and the lower particle is consequently attracted from the other one 
without being compressed. Hence it is assumed that the evaluated force corresponds only to the attractive 
component of the resulting force acting between the particles. 
The time step was considered as a model parameter. It is the increment of time between calculative iterations. 
The time step is generally chosen as a fraction of the critical Rayleigh time step, that is the natural oscillation 
period of the mass-spring system made by the particle and the elastic contact (Marigo and Stitt, 2015): ∆ݐ = 	 ඥ߷	ܴߨ ߥ0.1631⁄ܩ + 0.8766 (11) 

where ߷ is the particle density, ܩ is the material shear modulus at the contact. The normal range for the time 
step is between 10 % and 40 % of the critical Raleigh time step, as reported in the Edem 2019 documentation. 
The higher the particle energy in the simulation (higher forces, faster collisions) the lower should be the time 
step value. A time step equal to 20 % of the Raleigh time step is the default value recommended for EDEM 
codes. The smaller the time step, the more data points are produced. A large number of data points produce 
results with a very fine level of detail; however, the simulation time will be longer due to the increased number 
of calculations required. If the time step is too large, particles can behave erratically. 

3. Results and discussion 
From the tests with the Schulze ring shear tester at different normal forces, an average value for the cohesion 
and for the angle of internal friction has been measured. The values are reported in Table 1, together with the 
corresponding value of the van der Waals force, according to Eq. (2) and Eq. (3). The values used of ܣ and ݖ 
have been taken from Israelachvili (Israelachvili, 2011). Given the elastic nature of the glass beads, the van 
der Waals force, calculated with Eq. (2), resulted to be scarcely dependent on the consolidation level. 

Table 2 Particle and wall properties in the EDEM simulation: dp is the particle diameter, ߥ is the Poisson’s 
Ratio; ߷ is the particle density; G is the Shear Modulus 

Material dp  
(10-6 m) 

 ߷  ߥ
 (kg m-3) 

 ܩ
(107Pa) 

Restitution
coeff. 

Static 
Friction 

Rolling 
Friction 

Glass beads 100 0.25 2500 1 0.5 0.45 0.15 
Steel (wall material) - 0.25 4000 1000 0.5 0.45 0.15 

 

 

Figure 2 a) Evaluation of the interparticle force for different Surface Energies and at different time steps, 
evaluated as a fraction of the Raleigh time step; b) Search for the minimum required time step (fraction of the 
Raleigh time) which ensures the same interparticle force at the same Surface Energy, that in the analysis is 
170 J m-2. The two graphs have been obtained by using the Hertz-Mindlin interparticle contact force with the 
JKR cohesive model  

3.1 Hertz-Mindlin with JKR cohesive model 

Figure 2 represents the results of the simulated contact force at different surface energies (Figure 2a) and 
different time steps (Figure 2b) using the Hertz-Mindlin with JKR cohesive model. Inspection of the figure 
indicates that, in general, the lower the time step, the lower the contact force, for the same Surface Energy 
(Figure 2a). 
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Figure 3 Evaluation of the interparticle force (♦) at 
different Surface Energies for a time step of the 2 % 
of the Raleigh time, and comparison with the 
expected value, expressed by ࢃࢊ࢜ࡲ, and ࢃࢊ࢜ࡲ,. 
The model used is the Hertz-Mindlin with JKR 
cohesive model 

 
Figure 4 Evaluation of the interparticle force at 
different time steps, evaluated as a percentage of 
the Raleigh time step, and at different Energy  
Densities, and comparison with the expected value, 
expressed by ࢃࢊ࢜ࡲ, and ࢃࢊ࢜ࡲ,. The model used is 
the Hertz-Mindlin with Linear cohesion	

  
It appears that for a time step between 1 and 2 %, the trends are close and similar. As above mentioned, the 
lower the time step, the more accurate is the force evaluation. Therefore, it is necessary to understand which 
time step is the best to be chosen. In order to find this time step, simulations for the same value of the Surface 
Energy, i.e. 170 J m-2, and at different time steps have been carried out (Figure 2b). From the results, it 
follows that a time step up to 2 % of the critical time step is able to provide almost the same value of the force, 
which is represented in the figure with the orange hyphenated line. Therefore, a time step equal to 2 % of the 
critical time step can be considered as the best tradeoff between calculation time and accuracy of results. 
Hence with a time step of 2 %, simulations at different surface energies have been performed (Figure 3). 
Simulation includes some stochastic elements due to the particle generation process. Therefore, results may 
change between simulations made with the same parameters. Therefore, each simulation was repeated three 
times to verify the correctness of the evaluated cohesive force. With a time step of 2 %, simulations lasted 
approximately 20 minutes. Error bars have been calculated on the basis of the standard deviation between 
force results. It appears that simulations are reproducible. In fact, error bars are very short and not clearly 
visible in the graph. Inspection of Figure 3 shows a steep change in the contact force by changing the Surface 
Energy around 200 J m-2. This finding suggests that, for the particles under examination, and with the low 
value of the time step, required to have stable results of the contact force, small variations of the Surface 
Energy can bring to order of value changes of the interparticle forces. Unfortunately, the desired values of the 
contact forces, represented by the red and blue lines (referring to the experimentally estimated and to the 
theoretical values) are fully contained within this wide range of change of the modelled contact force. 
Therefore, adoption of the Hertz-Mindlin with JKR cohesive model for the contact forces, makes it difficult to 
choose a proper value of the Surface Energy parameter without avoiding errors in the interparticle force 
evaluation. 

3.2 Hertz-Mindlin with Linear cohesion model 

Figure 4 reports results of the calculated interparticle force using the Hertz-Mindlin with Linear cohesion 
model. Different simulations have been carried out, by changing the Energy Density and the time step. Also in 
this case, the force is highly dependent on the time step, although for a time step less than or equal to 2.5 %, 
the calculated force does not change for similar values of the Energy Density. In addition, still similarly to the 
previous case, the expected desired force (blue and red lines) is obtained in correspondence of the portion of 
the curve in which a small variation in the Energy Density can lead to large changes of the calculated force. 
Simulations with a time step of 2.5 % lasted between 15 and 20 minutes. 

4. Conclusions 
Two different models for the evaluation of the interparticle forces have been used to calibrate the model 
parameters: Hertz-Mindlin with JKR cohesive model and Hertz-Mindlin with Linear cohesion. The calibrated 
value of the parameter has been chosen by a comparison between the force estimated with the simulation. 
Even if a time step between 10 and 40 % of the critical Raleigh time step is usually suggested, in this work 
lower optimal percentages have been found out: 2 % and 2.5 %, for Hertz-Mindlin with JKR cohesive model 

1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00

0 400 800 1200 1600 2000

Co
nt

ac
t f

or
ce

 (N
)

Surface Energy (J m-2)

Simulation
Fvdw,1
Fvdw,2

1E-09

1E-07

1E-05

1E-03

1E-01

0.0 0.8 1.6 2.4 3.2

Co
nt

ac
t f

or
ce

 (N
)

Energy density (MJ m-3)

20 %
5 %
2.5 %
1 %
0.1 %
Fvdw,1
Fvdw,2

383



and Hertz-Mindlin with Linear cohesion, respectively. In the case of particles with an average diameter of 100 
μm, it seems that both the Hertz-Mindlin with JKR cohesive model and the the Hertz-Mindlin with Linear 
cohesion model, which can be implemented in the EDEM code, are not suitable if a low time step is used. In 
fact, in both cases a small change of the model parameter used could lead to a completely wrong estimation 
of the interparticle force. A possibility could be that of choose a higher time step, e.g. 20 %, and a value of the 
model parameters, the Surface Energy and the Energy Density respectively, for which the expected force can 
be obtained. In the future it might be possible to choose different cohesive models, which are implemented in 
the EDEM software, such as: Edinburgh Elasto-Plastic Adhesion Model, Hertz-Mindlin with JKR Version 2 and 
Hysteretic Spring. Furthermore, other materials than glass beads could be experimentally analyzed and 
studied with the use of statistics to evaluate which of the parameters are most significant for each model. 
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