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CO2 and H2O can be energy-upgraded through solar thermochemical cycles. Suitable redox materials are 
reduced in a solar reactor at high temperature (above 1300-1400°C) and afterwards re-oxidised by CO2 and/or 
H2O flow, thus producing CO and/or H2. Ceria was recognised as one of the most interesting materials for this 
process. However, high reduction temperature, low re-oxidation kinetics as well as low stability hindered its 
practical application. In this work, the redox properties of Ce0.75Zr0.25O2 system prepared by hydrothermal 
synthesis were compared with those of a co-precipitated sample with the same nominal composition used as 
reference. Samples were characterised by XRD and N2 physisorption; their self-reducibility and CO2 splitting 
activity were tested in a thermogravimetric balance, while H2O splitting properties were studied in an ad hoc 
fixed bed reactor on H2 pre-reduced samples. Obtained results proved that the material prepared by 
hydrothermal synthesis is characterised by both improved reducibility and splitting activity.  

1. Introduction 

Catalytic thermochemical cycles have received a renewed interest as a first step to produce fuels (McDaniel, 
2017). In a typical cycle, a redox material is reduced at high temperature in a solar reactor and then oxidised 
by carbon dioxide and/or water, producing carbon monoxide and/or hydrogen.  
Catalytic two-step cycles are generally preferred to multistep processes (see, for instance, Kalyva et al., 2015; 
Shazed et al., 2017) due to their higher theoretical efficiency and lower complexity (Rao and Dey, 2015). 
Volatile and melting oxides are not used due to several issues related to the required fast quenching of 
gaseous products for volatile oxides, as well as crushing and sieving operations for melting oxides (Agrafiotis 
et al., 2015; Fu et al., 2016; Sheffe and Steinfeld, 2014). 
Non-stoichiometric oxides, such as cerium dioxide and perovskites, are promising for their high structure 
stability during the whole cycle, even if the released oxygen quantities are lower.  
Ceria is considered as the benchmark material for high temperature splitting cycles (Ruan et al., 2017). 
However, ceria-based cycle is characterised by low solar to fuel efficiency and thermal stability loss. Modifying 
the reactor/catalyst configuration (Ackermann et al., 2017; Gladen and Davidson, 2016; Tou et al., 2017) 
and/or prompting catalyst self-reduction by using a reducing gas in the solar reactor can improve redox 
performance (Nair and Abanades, 2016; Zhao Z. et al., 2016). Noteworthy, doping is the main route used to 
improve the CeO2 redox properties (Bhosale et al., 2016a; Muhich and Steinfeld, 2017; Zhao B. et al., 2016), 
thanks to the introduction of defects. It has been shown that Ce partial substitution with zirconium can 
enhance splitting properties of ceria thanks to the increased oxygen diffusion in the lattice (Muhich and 
Steinfeld, 2017). The highest H2 production through water splitting was shown by CeO2-ZrO2 systems with 
Ce/Zr molar ratio = 3 (Le Gal et al., 2013). Notably, the co-presence of different sites/phases has been 
recognized as a key feature to achieve both good catalyst self-reduction at lower temperature and good 
activity towards splitting reactions (Miller et al., 2014; Pappacena et al., 2016; Pappacena et al., 2017). 
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Indeed, the synthesis strategy can strongly affect the final structural, morphological and redox properties of 
oxides and, consequently, H2 release rate and productivity (Nair and Abanades, 2016). Among the available 
synthetic routes for CeO2-ZrO2 systems, hydrothermal synthesis ensures low cost and mild experimental 
conditions, providing good control on final composition as well as morphologies and structure of the 
nanomaterials (Papari et al., 2017). 
With the aim to get insight into the effects of the synthesis method on structural/compositional features and 
redox performances, in this study, Ce0.75Zr0.25O2 materials were prepared by both co-precipitation and 
hydrothermal synthesis. The activity of these materials towards both CO2 and H2O splitting were tested by 
thermogravimetric analysis (TGA) and flow reactor tests, respectively. Samples prepared by hydrothermal 
route showed higher redox performance and improved stability, providing higher CO and H2 production than 
the co-precipitated sample.  

2. Materials and methods 

2.1 Materials preparation 

Ceria-zirconia materials were prepared through co-precipitation and hydrothermal routes. All reagents were 
purchased from Sigma-Aldrich and used as received. Cerium (III) nitrate hexahydrate, zirconium (IV) nitrate 
hydrate, zirconium (IV) propoxide (70 wt% in 1-propanol), acetylacetone, anhydrous 1-propanol were 
employed. According to previous results (Le Gal and Abanades, 2012), Ce/Zr molar ratio was kept constant 
equal to 3.  
The co-precipitated sample was prepared starting from an aqueous solution containing stoichiometric amounts 
of cerium and zirconium nitrates in 75 ml bi-distilled water and stirred for 3 h. A homogeneous gel was then 
obtained by heating in a MW oven (CEM SAM-155), that was further calcined at 1100°C for 4h. The so-
obtained sample was labelled CZ-CP.  
In the hydrothermal synthesis, a solution of cerium nitrate 0.46 M in 1-propanol dropwise added to a solution 
of zirconium propoxide 0.41 M in 1-propanol giving a volumetric ratio 3:1 was prepared. Then an appropriate 
amount of acetylacetone to obtain a molar ratio acetylacetone : zirconium (IV) propoxide = 0.5 was added. 
Acetylacetone is a chelating ligand commonly used to stabilise zirconium alkoxide sols in sol-gel routes, but 
less employed in hydrothermal processing. After two days under magnetic stirring the solution was poured into 
a Teflon vessel and submitted to hydrothermal treatment at 120°C overnight. After the hydrothermal treatment, 
the sample was centrifuged and repeatedly washed with distilled water (3 times) to remove any unreacted 
species, and then dried at 80°C overnight. Finally, particles were treated at 500°C in nitrogen flow for 5 h to 
eliminate the nitrates and adsorbed organic substances. The so-obtained sample was labelled CZ-HTA.  

2.2 Materials characterization 

ICP-MS analysis performed on an Agilent 7500CE instrument was used to investigate the actual composition 
of the materials. Results showed differences with the nominal content within the experimental error (±5%).  
A XRD diffractometer PANalytical X'Pert Pro was used to collect X-ray diffraction spectra. Step size was set at 
0.02° and counting time was set at 80 s per step. Average crystal size (τ) was evaluated through the Scherrer 
formula: ߬ = ௄∙ఒఉ∙௖௢௦ఏ   (1) 

where:  τ is the mean size of the crystallite domains, K is a dimensionless shape factor, with value close to 
unity, λ is the X-ray wavelength, β is the broadening at half the maximum intensity (FWHM), θ is the Bragg 
angle (in radiant).  A Quantachrome Autosorb-1C instrument was used to measure BET surface areas (SSA) 
of fresh and used materials by N2 adsorption at 77 K; samples were degassed at 150°C for 1.5 h before the 
measurement.  

2.3 TG analysis 

TGA/DSC TA Instrument Q600SDT was used to perform TG analysis, following a previously described 
procedure (Luciani et al., 2018). Briefly, a 30 mg sample was placed in an alumina crucible, pre-treated in air 
at 1200°C (heating rate: 20°C/min) in order to remove the chemisorbed CO2 and then cooled down to room 
temperature. After 1 h purging under a nitrogen flow, the sample was heated up to 1350°C (heating rate: 
20°C/min) under a nitrogen flow (0.1 l(STP)/min) and kept for 50 min at 1350°C. Then it was cooled down to 
1100°C and the atmosphere was switched to CO2, followed by a first isothermal step at 1100°C for 50 min 
(oxidation step) and by a second isothermal step at 1000°C for 50 min.  
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2.4 H2O splitting tests 

The experimental rig and the experimental details were previously described (Luciani et al., 2018). Briefly, a 
tubular quartz reactor inserted into an electric tubular furnace (Lenton) was used to hold the powdered 
samples (500 mg; 170-300 µm). Temperature was monitored by means of a thermocouple placed inside the 
reactor. The maximum temperature achievable by the tubular furnace was about 1100°C; thus, samples were 
reduced by a hydrogen pre-treatment (10 l(STP)/h; 5 vol.% H2/N2) at about 1000°C (heating rate: 10°C/min) 
(Pappacena et al., 2016; Pappacena et al., 2017; Al-Shankiti et al., 2013). After cooling down to about 100°C, 
splitting tests were carried out by flowing a 3 vol.% H2O/N2 mixture (10 l(STP)/h); the temperature was raised 
up to about 1000°C (heating rate: 10°C/min; time at the maximum temperature: 20 min).  

3. Results 

3.1 Materials characterization 

XRD spectra of the studied samples are shown in Figure 1. Each profile shows main peaks at 2θ = 28.870°, 
48.049°, 57.012°, assigned to (1,1,1), (2,2,0) and (3,1,1) planes in a fluorite structure, typical of the CeO2-ZrO2 
system. CZ-CP shows more intense and defined peaks, thus indicating a larger crystalline size than CZ-HTA 
(Table 1) as a consequence of the higher calcination temperature used for the co-precipitated sample. 
Actually, the hydrothermal synthesis is expected to allow small crystal size and high surface area. XRD carried 
out on samples after TG analysis (not reported) do not show significant qualitative differences, thus excluding 
de-mixing phenomena.  
BET analysis has been carried out on the samples as prepared and after a redox cycle in TG; results are 
given in Table 1. CZ-HTA sample shows a higher surface area than the co-precipitated sample, both before 
and after TG tests. However, SSA of the CZ-HTA sample decreases after one redox cycle, likely because of 
sintering induced by the high temperature reached. On the contrary, specific surface areas of the CZ-CP 
sample before and after the redox cycle are very similar.  

 

Figure 1: XRD profiles of the studied samples.  

Table 1: Average crystallite size and specific surface areas of the samples 

Sample τ, nm SSA, m2/g SSA*, m2/g 

CZ-CP 23.9 3 4 
CZ-HTA 3.6 112 12 
*after redox tests in TG 

3.2 TG analysis 

Air pre-treatment in air up to 1200°C was performed in situ in order to remove any carbonate species formed 
during samples storage and handling.  
In Figure 2, the TG profiles of both samples during a red-ox cycle are shown. Due to air pre-treatment, mass 
losses in TG curve during heating under nitrogen flow are directly related to O2 evolution. In particular, the 
weight loss of the CZ-CP sample starts at about 1100°C, whereas the CZ-HTA is easily reducible, since its 
reduction starts at 1000°C. Moreover, TG curve of CZ-HTA features a higher slope, thus suggesting faster 
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reduction kinetics than CZ-CP sample. Finally, the sample prepared by hydrothermal synthesis is also more 
reducible, as pointed out by the larger weight loss. 
As reported in Figure 2, reduced samples were re-oxidised by exposing them to CO2 after cooling down to 
1100°C and 1000°C; the corresponding weight rises are due to re-oxidation and simultaneous CO evolution. 
Temperature poorly affects weight gains independently from the preparation method during the oxidation 
steps. On the contrary, isothermal cycles at 1350°C are characterised by very low CO production (not 
reported). Thus, the oxidation temperature, which depends on several factors (Ehrhart et al., 2016), should be 
chosen in order to obtain the highest solar-to-fuel efficiency of the cycle. The CZ-HTA sample shows the 
highest weight regain. Accordingly, hydrothermal synthesis allowed to improve both self-reducibility and CO2 
splitting properties. 
From the quantitative point of view, O2 productions on CZ-CP and CZ-HTA were about 220 and 470 µmol/g 
respectively, while CO productions were about 63 and 80 µmol/g, respectively. The performance of CZ-HTA 
sample agrees with the literature results (Bhosale et al., 2016b; Zhao B. et al., 2016). 

 

Figure 2: TG profiles of a CO2 splitting cycle on the studied samples. 

3.3 H2O splitting tests 

Reduction profiles (not reported) show one or two unresolved peaks at low temperature (400-600°C) and a 
high temperature peak (T ≥ 800°C), that can be associated to surface and bulk reduction respectively 
(Trovarelli, 2002). H2 evolution profiles (not reported) during H2O splitting tests are simpler and characterised 
by one or two well-defined peaks. CZ-CP showed a single oxidation peak at about 350-400°C, while CZ-HTA 
is oxidised showing two peaks at 250°C and 600°C, with the former larger than the latter. 
From the quantitative point of view (Figure 3), it is worth noting that higher reduction degree was obtained by 
hydrogen pre-treatment with respect to self-reduction under nitrogen (i.e. during TGA). CZ-CP showed the 
lowest amount of released oxygen and produced hydrogen as well as incomplete re-oxidation (about 50%). 
On the contrary, CZ-HTA produced more hydrogen than expected during the first cycle and showed a high re-
oxidation degree (about 90%) during the second cycle. Surprisingly, samples showed similar reduction 
degrees during the first cycle, while re-oxidations were different, CZ-HTA showing the larger H2 production. 
This suggests that the sample prepared by hydrothermal synthesis is characterised by a faster oxidation 
kinetics, as confirmed by oxidation behaviour observed during H2O splitting tests. 
Interestingly, the CZ-HTA sample showed negative reduction degree at the end of the first oxidation step; a 
significant Ce3+ fraction in this sample could explain this behaviour. It is worth noting that thermochemical 
splitting reactions (i.e. reduction and oxidation) involve both surface reactivity and bulk redox properties, linked 
through oxygen diffusion from the bulk to the surface (during reduction) and vice versa (during oxidation). It 
could be inferred that Ce3+ ions in the CZ-HTA sample are (not homogeneously) distributed both at surface 
and in the bulk phase. According to previous findings, oxygen vacancies (related to Ce3+ ions) at the surface 
are active sites for water dissociation (OH groups on the surface are obtained) (Clarizia et al., 2017), while the 
corresponding Ce3+ sites promote H2 formation by weakening H-O bonds (Pappacena et al., 2017). Moreover, 
oxygen defects in the bulk phase (related to the bulk Ce3+ fraction) promote oxygen diffusion between the 
surface and the bulk, thus leading to a faster re-formation of surface oxygen vacancies (Pappacena et al., 
2017). The relationship between redox properties and Ce3+ fraction on CZ-CP and CZ-HTA samples is under 
investigation.  
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Figure 3: Amount of oxygen atoms released during H2 pre-treatment and gained the materials during H2O 
splitting tests for different cycles.  

4. Conclusions 

In this work the effect of the preparation method on the splitting performance of Ce0.75Zr0.25O2 system was 
investigated. The redox properties of a sample prepared by hydrothermal synthesis were compared to those 
of a co-precipitated ceria-zirconia sample, used as a reference. 
The material prepared by hydrothermal method showed lower crystallite size, as expected, as well as larger 
specific surface area both before and after high temperature redox cycles. 
Results of splitting tests on CO2 and H2O agreed that the material prepared by hydrothermal synthesis is 
characterized by both improved reducibility and splitting activity. 
A possible explanation of this behaviour could be related to a higher bulk and surface Ce3+ fraction in the 
material prepared by hydrothermal route. As a matter of fact, Ce3+ ions are directly related to oxygen 
vacancies, which are the active sites for CO2/H2O activation on the surface and improve the oxygen diffusivity 
in the bulk phase. 
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