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Second generation biofuels are those produced from lignocellulosic biomass or crops that do not compete with 
food production. Cellulose and hemicellulose in plants can be transformed to building blocks, pentoses and 
hexoses, by hydrolysis. However, most processes require a physic-chemical pretreatment to remove lignin, 
which acts as a barrier for chemicals during hydrolysis. In fact, pretreatment for removal of lignin or lignin 
byproducts formed during hydrolysis can be considered as limiting steps for subsequent sugar transformation 
processes. Alternatively, industrial cellulosic residues, in which lignin and most of hemicellulose have been 
previously removed through chemical treatment, could be used as raw material for the production of reducing 
sugars without the drawbacks related to pretreatment and purification steps. Such is the case for diaper 
industry, which generates a polyacrylate-cellulose dust (POCEL), which cannot be recycled to the process. 
POCEL is comprised by around of 60 wt. % cellulose and 40 wt. % super absorbent polymer sodium 
polyacrylate. Due to the high content of cellulose in comparison to lignocellulosic biomass, in which the 
cellulose content usually oscillate between in the range 20 to 40 wt.%, POCEL could be used as a low cost 
raw material for glucose production, that can be subsequently fermented to produce bioethanol.  
In this work, experimental results of POCEL suspensions hydrolysis under subcritical water conditions in a 
continuous laboratory scale unit are presented. POCEL suspensions in water at 1.2 wt. % were prepared by 
adding a few drops of hydrochloric acid up to pH 2 to prevent sodium polyacrylate jellification with water. The 
hydrolysis unit in subcritical water at continuous laboratory scale consisted of a high pressure pump, 
preheater, a tubular reactor immersed in an electrical oven, heat exchanger and needle valve to regulate 
system pressure. Experiments were carried out in the temperature range 350 to 420 °C, pressures of 100 to 
136 atm and suspension flowrates of up to 6.4 mL/min. Reactor effluent samples were characterized by 
means of dinitrosalicylic acid (DNS) colorimetric method. The highest concentration of reducing sugars was 
obtained at 390 °C and a water flowrate of 1.9 mL/min, which corresponds to a residence time of 126.7 s in 
the reactor. The estimated productivity of sugar production based on a cellulose content of 60 wt.% in POCEL 
was 85.4%, which indicates this kind of cellulosic waste could be used to obtain high reducing sugars 
concentration in hydrolysates through a continuous subcritical water process. 

1. Introduction 

Second generation biofuels are those produced from lignocellulosic biomass or crops that do not compete with 
food production (Naik et al., 2010). Cellulose and hemicellulose in plants can be transformed to building 
blocks, pentoses and hexoses, by hydrolysis (Aditiya et al., 2016). Alternatively, industrial cellulosic residues, 
in which lignin and most of hemicellulose have been previously removed through chemical treatment, could be 
used as raw material for the production of reducing sugars without the drawbacks related to the pretreatment 
and purification steps. Such is the case for diaper industry, which generates a polyacrylate-cellulose dust 
(POCEL), which cannot be recycled to the process. POCEL is a by-product obtained during pneumatic 
transport and cellulose shredding and is comprised by very fine particles collected through vacuum systems. 
Due to its size characteristics, POCEL cannot be recycled back into the process and must be disposed of by 
incineration or in sanitary landfills, where its high hygroscopicity can cause terrain instability. POCEL utilization 
has been scarcely studied in literature. The composition of super adsorbent polyacrylate in POCEL varies in 
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the range 38 to 60 wt. % and some research studies have focused in its water sequestration capacity for 
several industrial applications to replace pure polycrylate consumption. Alternately, high cellulose content in 
POCEL could be hydrolysed to fermentable hexoses, with the added advantage of the absence of 
hemicellulose and lignin present in biomass materials which form pentoses and phenolic decomposition 
products during hydrolysis (Limayem & Ricke, 2012). 
The hydrolysis of cellulose can be accomplished by conventional acid, basic and enzymatic methods(Nguyen 
et al., 2018). These processes usually required steps of physical, chemical or biological pretreatment of 
biomass to separate lignin (Haghighi et al., 2013), which acts as a barrier to cellulose and hemicellulose 
chemical attack (Prado et al., 2014).These pretreatment steps not only increase processing costs but also 
could produce decomposition products that inhibit subsequent fermentation. Alternatively, a hydrolysis 
process that uses only water at high temperature and pressure, conditions, known as subcritical water 
hydrolysis, has gained increased attention (Kruse & Dahmen, 2015). This process takes advantage of the 
well-known tunable properties of water in the vicinity or above the supercritical point, 374 °C and 22.1 MPa, to 
favor or disfavor acid/basis catalysis (Cantero et al., 2015), avoiding the use of corrosive acids such as 
sulphuric and hydrochloric acids commonly employed in the conventional acid catalysed hydrolysis. Due to the 
properties of subcritical/supercritical fluids, water can easily penetrate biomass structures to hydrolyze 
cellulose and hemicellulose (Cocero et al., 2018). Hydrolysis in subcritical and Supercritical water has been 
conducted through reactor configurations for the batch, semi-continuous and continuous, as reviewed by 
Prado & coworkers (2015). Semibatch and continuous mode operation data can be transferred to industrial-
scale reactors (Schacht et al., 2008).  Accordingly, in this work we report on the production of total reducing 
sugars (TRS) by subcritical water hydrolysis of POCEL in a continuous mode operation in order to assess its 
usability as a raw material for biofuels or chemicals production. 

2. Materials and methods 

2.1 Polyacrylate-cellulose (POCEL) dust 

POCEL dust was provided by a diaper industry located near Bogotá and the reported cellulose and 
polyacrylate composition as used in diaper processing was 60% and 40% respectively. In this particular 
industry, POCEL is a waste problem and its proper handling and disposition is carried out by incineration with 
additional costs. POCEL physical aspect is shown in Figure 1a. It is a compacted dust which can be easily 
disintegrated. POCEL was prepared as a water suspension 1.2 wt. % by adding a few drops of hydrochloric 
acid in order to avoid water jellification caused by polyacrylate super adsorbent as shown in Figure 1b. Higher 
POCEL concentrations could not be prepared because of the resulting high viscosity which makes its handling 
difficult.  
 

          

Figure 1: Polyacrylate-cellulose dust (POCEL) a) Physical aspect. b) water suspension 1.2 wt.%   

2.2 Experimental set-up 

The scheme of the continuous lab scale subcritical hydrolysis unit is shown in Figure 2. It consisted of 
deionized water supply tanks and POCEL suspension, a Williams Milton Roy (PA, USA) pneumatic high 
pressure pump model CP250V225, two POCEL suspension reservoirs made of 1/2 in O.D. stainless steel 
tubing 3 m long placed in parallel, a preheater made of 316SS Swagelok tubing 1/8 in O.D (3.175 mm), length 
of 3 m coiled tubing and electrical resistances, an insulated tubular reactor made of 316SS Swagelok tubing 
0.5 in O.D (1.27cm), 0.065 in (0.17 cm) wall thickness, length of 100 cm and volume of 67.9 cm3, a concentric 
tube heat exchanger with water as cooling media, a needle depressurization valve model SS-1RS4 
(Swagelok, Barranquilla Colombia) valve and sample collection recipient, pressure gauges (Ashcroft CT, USA) 
and thermocouples, as shown in Figure 2. In a typical run, both reservoirs are filled up with POCEL 
suspensions but only one is feeding the reactor by means of water that flows from the high pressure pump 
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and pushes the suspension through the system. After a specific time, depending on the water flow rate, high 
pressure water is diverted to the second reservoir while the other is emptied of the water and filled up again 
with suspension. This approach avoids passing POCEL suspension through the pump, which can cause 
clogging in check valves. Samples were collected under steady state conditions, which were obtained after at 
least four residence times in the reactor had passed, and was verified for an steady temperature and pressure 
and the physical aspect of the effluent. 

Figure 2: Scheme of the continuous lab scale subcritical hydrolysis unit 

2.3 Analytical methods 

The determination of total reducing sugars (TRS) consisted of the measurement of reactor effluent samples by 
the dinitrosalicylic (DNS) colorimetric method using d-glucose as standard (Panreac, Barcelona Spain) (Miller, 
1959). Briefly, for each ml of hydrolysate sample, 1 ml DNS reagent previously prepared was added, boiled for 
15 min, and 1 ml deionized water added afterwards to keep for 10 min in cold water before reading the 
absorbance in a Macherey-Nagel Nanocolor 500 D photometer at 540 nm. The concentration of reducing 
sugars was calculated based on a standard curve obtained with glucose concentrations of up to 1 mg/ml.  
TRS yield was calculated with the concentration and volume collected to find the mass of total reducing 
sugars (TRS) in hydrolysate samples and it was assumed a 60 wt. cellulose composition in POCEL to 
approach total cellulose mass fed to the system. 

3. Results and discussion 

Figure 3 shows the physical appearance of POCEL hydrolysate samples obtained at different reaction 
conditions, which were selected based on preliminary experimental studies that showed hydrolysis 
experiments carried out at temperatures lower than 350 °C did not proceed considerably. System pressure 
was kept constant at 2000 psi. A brownish color and pleasant sweet scent indicate a high total reducing sugar 
(TRS) concentration in hydrolysate samples. The darker the brown color the higher the measured absorbance 
or TRS concentration in the obtained hydrolysate at that specific reaction time, as in sample 3 (a).  
 

 

Figure 3: Physical appearance of POCEL hydrolysate samples. (a) Highest TRS yield. (b-d) Decreasing TRS 
yield due to biomass exhaustion. (e) End of hydrolysis   
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A lighter brown color, as shown in samples (b), (c), and (d),  indicates a lower TRS concentration as a result of 
subsequent biomass exhaustion in the reactor, until effluent becomes transparent again as in sample (e), 
which is practically water and indicates the end of hydrolysis. Table 1 summarizes continuous hydrolysis 
experimental conditions and obtained TRS concentration and yield. Average TRS was taken as the average of 
at least four consecutive samples taken under steady state operation conditions. STDV is the standard 
deviation. Since POCEL is comprised by mostly cellulose, it can be assumed that TRS concentration is 
equivalent to glucose concentration or fermentable sugars concentration, since pentoses obtained from 
hemicellulose, which are not fermentable by Saccharomyces cerevisiae, could not be produced from cellulose. 
Total reducing sugars (TRS) yield was approximated by having into account a 60 wt.% cellulose composition 
in POCE dust, according to the weight percent characterization provided by the diapers producer, which is 
equivalent to a 0.72 wt.% in POCEL suspension fed to the system. Residence time in the reactor 	( ) was 
calculated with the reactor volume 	( ) and the volumetric flowrate at reaction conditions 	( ⁄ )			which was estimated by means of a mass balance between the pump outlet at room 
temperature conditions ( )	and reactor inlet at subcritical reaction conditions ( ), as shown in Equation (1). 
Mixture density at reaction conditions 	( ⁄ )  was approximated as that of water in steam tabs, since 
water comprises more than 98% of reactive mixture. Residence time calculation is shown in Equation (2). ∙ = ∙                                                                                                                                  (1) 
 = ∙ ∙                                                                                                                                   (2) 

Table 1: Continuous hydrolysis experimental conditions and obtained TRS concentration and yield 

Experimental 
Run  

Temperature 
(°C)   

Flowrate 
(mL/min) 

[TRS]    
(mg/mL)             

Average 
[TRS] (mg/mL)
(STDV) 

TRS yield        
(%)                  

Residence 
time (s) 

1 350 6.4 0.158  1.158 
0.707  2.715 
0.218  1.160 
 

1.02 
(0.94) 

14.1 46.8 

2 350 3.2 0.160  1.637 
0.244  1.277 
1.557  1.437 
2.275  

1.23 
(0.77)                 

17.1 93.6 

3 370 3.2 4.411  5.689 
7.305  4.611  
5.269   

5.50 
(1.15) 

76.4 82.4 

4 390 3.2 6.447  5.030 
6.607  6.188 
7.046  4.371 

5.95 
(1.02) 
 

82.6 75.3 

5 390 1.9 6.707  5.589 
6.214  6.112 

6.15 
(0.46) 

85.4 126.7 

6 390 5.1 5.609  4.651 
5.289  6.128 
5.888  5.349 
6.487  3.972 

5.42 
(0.81) 

75.3 47.2 

7 420 5.1 6.747  7.565 
6.070  5.828 
4.371 

6.11 
(1.18) 

84.9 42.5 

8 420 3.2 5.269  5.649 
6.128  6.048 

5.77 
(0.40) 

80.1 67.7 

Results in Table 1 indicate a large amount of variation in experimental results for TRS measurements at 
temperatures up to 370 °C, whereas runs 4-8 displayed a lot less variation as evidenced by the standard 
deviation of data when compared to runs 1-3. This could be attributed to a faster hydrolysis reaction rates at 
higher temperatures and the establishment of homogeneous phase conditions in contrast to the existence of 
solid POCEL and liquid phases at lower temperatures, which at the same time difficult depressurization control 
and sample collection. TRS concentration and yield varied in the range 1.02 to 6.15 mg/mL and 14.1 to 85.4 
%, respectively, and highest TRS concentration and yield was obtained in run 5, which was carried out at 390 
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°C and a water flowrate of 1.9 mL/min, which corresponds to a residence time of 126.7 s. However, similar 
results were obtained when working at a higher temperature in a considerable shorter residence time as 
indicated in run 7, which was carried out at 420 °C, 5.1 mL/min flowrate and a residence time of 42.5 s. A 
shorter residence time when working at 390 °C produced a decrease in concentration and yield, as indicated 
in run 6, which can be attributed to insufficient time for hydrolysis to proceed. Runs 1 and 2 indicate hydrolysis 
does not occur significantly at temperatures lower than 350 °C, even at longer residence times. Hydrolysis 
proceeds only at temperatures higher than 370 °C and it is observed the effect of temperature is more 
significant than the effect of flowrate, since  TRS yield increases only 3% at 390°C as a result of increasing 
residence time by decreasing flowrate by half. These results suggest high TRS yields can be obtained at 
temperatures around 400 °C and that high temperatures make possible to attain high TRS yields in 
considerably shorter residence times. 
The vast majority of subcritical water hydrolysis studies with different types of biomass are carried out by 
means of semibatch, also known as semicontinuous, reactor set-ups .In this type of reactor, a fixed amount of 
biomass is charged to the reactor and water flows continuously, removing reaction products to avoid 
degradation (Marulanda & Marulanda, 2017). This approach is useful for lignocellulosic materials due to the 
technical difficulties that might arise from pumping solids at high pressure, or the requirements with respect to 
size reduction to facilitate this operation. Only a few studies have been carried out with continuous reactors 
and have studied the supercritical hydrolysis of pure cellulose in order to elucidate kinetic mechanisms, 
products and degradation products at different reaction conditions. For example, Cantero and coworkers 
(2013) pointed out cellulose hydrolysis is completed at subcritical temperatures with a high concentration of 
glucose and oligosaccharides but the reaction has a low selectivity and needs bigger reactors and longer 
residence times. In order to improve selectivity, a novel reactor capable of operating under supercritical 
conditions with an effective control of residence time was developed, deemed as a sudden expansion micro 
reactor, in which heating and cooling slopes were avoided. Experiments were carried out with a micro-
crystalline cellulose concentration 1.6 wt. % and temperature in the range 300 to 400 °C at a constant 25 MPa 
pressure and residence times were varied from 0.004 s to 5 s.  Experimental results showed that above 375 
°C cellulose hydrolysis accelerated more than was predicted by the Arrhenius parameters of the reaction for 
subcritical temperature, which could be attributed to the reaction taking place under homogeneous phase 
conditions without mass transfer limitation that could be present when working at subcritical conditions, and 
the highest selectivity of 98% was achieved at 400 °C and residence time of 0.023 s. Experimental results 
shown in Table 1 agree well with these results in which a high yield of sugars was obtained only at 
temperatures higher than 370 °C with a maximum at 390 °C even if pressure was lower than supercritical 
pressure, which suggest effect of temperature is more significant than pressure. Longer residence times 
needed in this study when compared to experimental data obtained by Cantero and coworkers (2013) could 
be attributed to the heating procedure, which was gradual instead of instantaneous, and the use of an 
industrial polyacrylate-cellulose fiber waste instead of micro-crystalline cellulose.  
Use of higher temperatures with short residence times in the continuous subcritical or supercritical hydrolysis 
of biomass materials could improve obtained sugar yields as experimental results in Table 1 suggest.  

Table 2: Experimental data of semibatch studies for different biomass materials and TRS yield 

Raw material 
Cellulose/hemicellulose  

Reaction conditions 
T(°C), P(psi), Flowrate, Time   

TRS yield 
% 

Reference 

Kikuyo grass  
(26.9% 26.2%) 

300 °C, 3190 psi, 9 ml/min, 11 min 22% (Marulanda &  
Marulanda 2017) 

Sugar cane bagasse  
(35%, >30%) 

290°C, 2900 psi, 33 ml/min, 16 min 23% (Prado et al., 2014) 

Rice husks 
(18.5%, 28%) 

220 °C, 2900 psi, 5 min 18% (Abaide et al., 2019) 

POCEL suspension 
(0.72% cellulose) 

390 °C, 2000 psi, 1.9 mL/min, 126.7 s 
420 °C, 2000 psi, 5.1 mL/min, 42.7 s 

85.4% 
84.9% 

This work 

 
In this regard, a direct comparison of residence times with semibatch studies is not practical since water is 
passed through the packed bed reactor until cellulose and hemicellulose are practically depleted.  Although a 
rapid removal of reaction products is accomplished in semibatch reactors, decomposition reactions due to an 
extended reaction time could decrease yield. Table 2 shows experimental data of semibatch studies for 
different biomass materials and reported data in this work. 
As shown in Table 2, continuous flow or water through the packet biomass bed in semibatch studies can take 
several minutes and decomposition due to an extended reaction time in the fixed bed could result in loss of 
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productivity and the formation of several decomposition products such as furfural, hydroxymethyl furfural, 
acetic acid, acrylic acid and formic acid, which could prevent the fermentation process (Mussatto & Roberto, 
2004). In order to avoid or minimize decomposition products formation, shorter residence times should be 
preferred. In this regard, continuous subcritical or supercritical hydrolysis of cellulosic materials such as 
POCEL, cottom and paper waste and other cellulosic industrial residues is a promising process due to the fact 
that these raw materials have high cellulose compositions, practically no lignin and hemicellulose and could be 
pumped at high pressure and temperature with special equipment or flow arrangements that make possible to 
work in a continuous mode operation. 

4. Conclusions 

Continuous subcritical hydrolysis of polyacrylate-cellulose dust (POCEL) waste, which is currently discarded 
without any valorization, was carried out. Highest TRS concentration and yield was obtained at 390 °C and a 
water flowrate of 1.9 mL/min, which corresponds to a residence time of 126.7 s. However, similar results were 
obtained when working at 420 °C, 5.1 mL/min flowrate and a residence time of 42.5 s. Hydrolysis did not occur 
significantly at temperatures lower than 350 °C, even at longer residence times. Hydrolysis proceeds only at 
temperatures higher than 370 °C and it is observed the effect of temperature is more significant than the effect 
of flowrate, since  TRS yield increases only 3% at 390°C as a result of increasing residence time by 
decreasing flowrate by half. These results suggest high TRS yields can be obtained at temperatures around 
400 °C and that high temperatures make possible to attain high TRS yields in considerably shorter residence 
times. Continuous subcritical or supercritical hydrolysis of cellulosic wastes is a promising process to obtained 
TRS increased yields in considerable shorter residence times that in semibatch mode operation. 
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