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The use of the biodigestion is considered promising for the energetic valorization of agriculture biomass such 
as swine farm sewage and lignocelulosic residues. The understanding of biodigesters operation and the 
control of their main operational variables are of great importance to improve the performance of anaerobic 
digestion process in order to increase biogas production. In this context, mathematical modelling can be used 
as a tool to increase process efficiency. This work presents the development of Artificial Neural Network 
(ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) to predict volume of biogas. The variables from 
process were temperature (ºC), pH, FOS/TAC ratio and type of biodigesters. A database was constructed with 
the information of the experiments, dividing them into groups of training (67 %) and test (33 %). The models 
were obtained using MATLAB R2018b toolbox. In the developed neural models, the data obtained from 
process were used as neurons in the input layer and the volume of biogas was used as the only neuron in the 
output layer. The performance of the neural models was evaluated by determination coefficient (R²) and error 
index (RMSE). The model developed from ANN and ANFIS modelling were satisfactory, showing the R² value 
giving the system’s complexity. In addition, the RMSE values of both models were close to each other, 
showing agreement of the methods used.  

1. Introduction 
Anaerobic digestion is a well-established technology for biogas production. The process is carried out in the 
absence of oxygen in order to stabilize organic matter. Different types of biomass can be used in the process. 
For example, Surra et al. (2018) reported the use of municipal solid waste and maize cob waste as feedstock 
for biogas generation. The use of this technology with these feedstocks is environmentally attractive since it 
treats effluents and produces biogas that are a potential source of heat and energy (Leite et al., 2018).  
Despite of its simplicity, anaerobic digestion is highly dependent of its environment variables (parameters) for 
instance pH, temperature, organic load, acidity/alkalinity and ammonia concentration (Cuadros et al., 2011; 
Mata-Alvarez et al., 2014; Yadvika et al., 2004). Hence, control of the main operational parameters is a priority 
when it comes to bioprocess since small changes in the operation can result in different biogas yields and 
composition. 
The need to control and to optimize the anaerobic digestion process has led to the development of 
mathematical models that can be used to promote a more efficient process (Kythreotou et al., 2014). To 
develop these models, alkalinity deserves a special attention. This parameter is related to the buffering 
capacity of anaerobic digestion systems and it is considered an indicator of the process imbalance of the. 
Because of its importance, different alkalinity measurement methods were developed to monitor the 
biodigestion process (Wang et al., 2018).  
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One alternative way to measure the alkalinity is using FOS/TAC ratio (also known as IA/PA). The first 
parameter (FOS) represents the accumulation of volatile fatty acids and the second parameter (TAC) is a 
measure of the buffer capacity in the digester due to bicarbonates alkalinity. Stable operating conditions have 
a FOS / TAC ratio smaller than 0.30. The increase in the ratio indicates inhibition of methanization, due to 
accumulation of organic acids, which are intermediates in biodigestion process (Drosg, 2013). 
There is a great amount of mathematical models for anaerobic digestion available in the literature. They can 
be divided in the following categories: the ones based on kinetic parameters such as microorganisms growth 
or substrate consumption; the statistical models; computational fluid dynamics (CFD); chemical composition of 
the feedstock and the artificial neural networks (Kythreotou et al., 2014; Xie et al., 2016).  The last one has 
great potential to be used in the biodigestion process modelling since it requires a minimum knowledge of the 
reaction mechanisms and experimental measures of the variables accessed in order to optimize the biogas 
yield (Xie et al., 2016).  
Some works using neural networks have been carried out in order to predict biogas yield using substrates 
characteristics and composition (Kana et al., 2012; Beltramo et al., 2016; Verdaguer et al., 2016).  Ghatak et 
al. (2018) investigated a neural network model to predict the behavior of biogas production curve at various 
temperatures. Neural network technique has also been used to predict methane production, to avoid shock-
loads and to optimize anaerobic digestion, using operational data from the process (Holubar et al. 2002; Qdais 
et al, 2010). Temperature, pH, chemical oxygen demand (COD), volatile fatty acid (VFA), alkalinity, volatile 
solids (VS) and biogas/methane flow are the mostly used process variables to feed the models (Holubar et al. 
2002; Qdais et al, 2010; Guwy et al., 1997; Yetilmezsoy et al., 2013). However, as far as we are concerned, 
neural networks models mostly used bicarbonate alkalinity as operational data instead of FOS/TAC ratio 
(Guwy et al., 1997; Yetilmezsoy et al., 2013; Ozkaya et al., 2007), which may not be the best option to indicate 
process stability. 
In the present study, a model was proposed concerning the biogas volume produced according to different 
operational conditions (reactor type, temperature, pH and FOS/TAC). In order to solve the optimization 
problem, two types of neural networks were tested: Artificial Neural Network (ANN) and Adaptive Network-
based Fuzzy Inference System (ANFIS), a combination of artificial neural networks and fuzzy logic. To ensure 
the quality of the results, determination coefficient (R²) and root mean square error (RMSE) were used for both 
methods. 

2. Material and methods 
2.1 Sampling 

The swine manure (SM) was collected in the finishing stage at the swine breeding unit (lineage Agroceres) of 
University of Viçosa (UFV - Campus Florestal, Brazil). Samples of rice husk (RH) were also collected at UFV - 
Campus Florestal, during a period of four months. They were pre-dried at 65 °C in an oven-dry for two days to 
eliminate extrinsic moisture and to obtain samples in the same operating conditions and able of being 
handled. Thereafter, they were cut in a knife mill (Marconi-MA280) to obtain fibers between 0.5-1.0 mm length. 
After that, they were stored for conducting physicochemical analysis and biodigestion experiments.  

2.2 Experimental  

Three biodigestion sets were operated in order to gain data to feed the neural networks model. All of them 
were operated at the same conditions. The biodigesters had different design:  1st) jacketed inox reactor, 
without recirculation of the effluent, 5 L nominal capacity; 2nd) reactor made of PVC, with internal heating coil, 
without recirculation of the effluent, 7 L nominal capacity and 3rd) reactor made of PVC, with internal heating 
coil, with recirculation of effluent to provide mixing, 7 L nominal capacity. 
They were fed with a mixture of swine sewage and rice husk, in order to provide organic load between 1.0 and 
1.5 g (VS) L-1 d-1. Rice husk was used to provide more carbon source and it was added in a proportion of 2 wt. 
%. 

2.3 Process monitoring 

Biogas production was monitored and measured at a regular interval through water displacement method. The 
biogas volume was converted to the volume in Normal Temperature and Pressure Conditions (NTP). In order 
to set the organic load, rice husk and swine sewage were submitted to VS analysis (American Public Health 
Association, APHA, 1998; Rendeiro, 2008). 
To obtain FOS/TAC ratio, 20 mL of effluent samples (periodic withdraw from de biodigester after treatment) 
were centrifuged and the supernatant was treated with sulfuric acid 0.05 mol L-1. Titration was first carried out 
until pH 5.0 (bicarbonate alkalinity) and then until pH 4.4 (alkalinity caused by VFA). The FOS/TAC alkalinity 
ratio was calculated as proposed by Drosg (2013). 
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The pH measurements were performed by direct reading using a TEKNAL/ T1000 brand benchmark 
potentiometer. 

2.4 Artificial neural network (ANN) architecture 

The model was built using four operation conditions (reactor type, temperature, pH and FOS/TAC) as inputs 
and biogas volume as output. In ANN, the number of hidden layers, the number of neurons in each hidden 
layer, the training algorithms (trainbr, trainlm) and the activation functions (logsig, tansig – Eq(1) and Eq(2), 
respectively) were varied in order to reach the best topology in the optimization. Both training algorithms used 
are a variation of Backpropagation. In this algorithm, firstly the information goes forward from the input layer to 
the output layer and then goes backward in order to update the network parameters minimizing the error. Both 
training algorithms tested use the Levemberg-Marquadt optimization method, but the trainbr also uses 
Bayesian regularization. To evaluate the model’s performance, RMSE, showed in Eq(3), and R2, showed in 
Eq(4), values were used in Matlab 2018b. 
 ( ) = 1 1 +    (1) 
 ( ) = 2 1 + − 1   (2) 
 
In which  is the value that comes from the input layer. 
 = ∑ ( − ̅) ∑ ( − ̅) + ∑ ( − )    (3) 

 = ∑ ( − )    (4) 
 
In which  is the experimental value,  is the estimated value, ̅ is the mean value and  is the data size in 
the input layer. 

2.5 Adaptive neuro fuzzy inference system (ANFIS) architecture 

Sugeno fuzzy inference method was used in the system modelling in which the fuzzy rules are related to the 
input variables and the defuzzification method is given by a Membership Function (MF). In this case, the neuro 
fuzzy system based in Subtractive Clustering (SC), with linear function in the output, using hybrid training 
algorithm was tested. SC is a method to determine the amount of clusters and clusters canters needed to 
solve the problem. MF used in the SC is the Gaussian curve function (gaussmf – Eq(5)). The same database 
used in the neural network model was given to the neuro-fuzzy model (four inputs and one output). Four 
parameters (Range of influence, Squash factor, Accept ratio and Reject ratio) inside SC were varied in order 
to reach the best configuration to fit in the dataset. To evaluate the model’s performance, RMSE and R2 
values were used in Matlab 2018b. 
 ( , , ) = ( )

   (5) 
 
In which  is the center of the Gaussian function,  is the width of the curve and  is the experimental value. 

3. Results and discussion 
3.1 ANN modelling of biodigestion 

The ANN modelling concerned prediction of the biogas volume produced. The results of experimental biogas 
volume produced in the biodigesters were used as database for the training (67 %) and testing (33 %) of the 
models. 
Table 1 displays some ANN modelling results for the biogas volume produced, with different activation 
functions, training algorithms, number of hidden layers and number of neurons in each hidden layer. The R² 
and RMSE values were analyzed to select the best topology. 
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Table 1: Artificial neural network topologies used in biogas volume prediction 

Topology 
Hidden layer 1 Hidden layer 2 Training 

algorithm R² RMSE Neurons Activation 
function Neurons Activation 

function 
1 10 logisg - - trainbr 0.60701 0.143178 

2 8 logsig - - trainbr 0.61114 0.1249 

3 16 tansig - - trainlm 0.5663 0.205426 

4 20 logsig - - trainbr 0.69391 0.087579 

5 24 tansig - - trainbr 0.63891 0.124499 

6 10 logsig 10 tansig trainbr 0.77704 0.088487 

7 7 logsig 10 tansig trainlm 0.62051 0.118322 

8 12 logsig 10 logsig trainbr 0.73549 0.108628 

9 12 tansig 10 logsig trainlm 0.55618 0.107703 

10 12 logsig 12 tansig trainbr 0.72905 0.096747 
 
The results indicate that the process has a non-linear tendency given that the performance indicators of the 
artificial neural networks were not very adequate, with R² values diverging from 1.0 and relatively high RMSE 
values. This could occur due to the unpredictable nature of living microorganisms’ metabolism (Campos et al., 
2018). However, the best proposed topology was capable of predicting biogas volume with a determination 
coefficient of 0.77704 using two hidden layers with 10 neurons in each of them, and with logsig in the first 
hidden layer and tansig in the second hidden layer as activation functions. The training algorithm was trainbr. 
Furthermore, RMSE value for this topology is one of lowest, indicating that this is the best proposed topology 
to predict biogas volume. 
Figure 1 shows the R² value for the best topology alongside a comparison of experimental and modelled data. 
Despite the calculated values not having the same value as the experimental data, it is noticeable that both 
the values follow the same pattern, showing neural network prediction capability.  

 

Figure 1: Result of the regression plot of biogas volume prediction (left) and biogas volume for each sample in 
the test data (right) for ANN. 

3.2 ANFIS modelling of biodigestion 

As well as ANN, ANFIS also concerned the prediction of biogas volume produced, following the same 
methodology used in ANN modelling, using the same database for training (67 %) and testing (33%). All the 
tested configurations of ANFIS models are depicted in Table 2, testing different values of range of influence, 
squash factor, accepted ratio and rejected ratio. The variation of these parameters causes the set of rules to 
change. The first configuration shows the standard values proposed by Matlab 2018b, resulting in 16 rules. A 
high number of rules can cause an overfitting problem, which can avoid the model to be a good representation 
of the process.  
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Table 2: ANFIS configurations used in biogas volume prediction 

Configuration Range of 
influence 

Squash 
factor 

Accepted 
ratio 

Rejected 
ratio 

Number 
of rules R² RMSE 

1 0.5 1,25 0,5 0,15 16 0.75262 0.12071 

2 0.7 1 0.7 0.15 8 0.79704 0.10827 

3 0.6 1 0.5 0.15 17 0.81209 0.10423 

4 1 1 0.5 0.15 4 0.52096 0.16565 

5 0.5 1 0.5 0.3 13 0.76171 0.11704 

6 0.7 1.25 0.5 0.15 7 0.77338 0.11469 

7 0.5 1.25 0.5 0.3 8 0.67352 0.13703 
It is important to observe that a high amount of rules do not mean that the model will have a better 
performance over another, for instance topology nº 2 had a better performance when compared with topology 
nº 1, but had half the amount of rules. 
The results of ANFIS modelling also shows a non-linear tendency of the problem, in agreement with the 
results found in ANN modelling, with R² values distant from 1.0 and RMSE relatively high. In general, the 
neuro fuzzy modelling showed slightly better results when compared with the neural network, with higher R² 
values and RMSE values in the same range. The best ANFIS configuration was capable of predicting the 
biogas volume with a determination coefficient of 0.81209, showing that despite of process complexity, the 
model had a good prediction capability. 
Figure 2 displays the comparison of modelled and experimental data for the best ANFIS configuration.  Even 
though calculated and experimental values did not show total agreement, the model was capable to follow the 
pattern showed by experimental data, displaying the model’s prediction capability. 
 

 

Figure 2: Result of the regression plot of biogas volume prediction (left) and biogas volume for each sample in 
the test data (right) for ANFIS. 

Due to the non-linear tendency of the problem, it would be necessary to increase the database of the inputs in 
order to enhance of both ANN and ANFIS performances. That would cause the network to have a better idea 
of possible scenarios regarding biodigestion, hence increasing the networks capability to train in different 
situations and having a better performance in the test phase. 

4. Conclusions 
Swine manure and rice husk can be a renewable feedstock to be used in the biodigestion process in order to 
generate biogas. The mathematical complexity of the process can be expressed in terms of neural networks 
modelling, allowing the process to be better understood, hence enhancing process control and monitoring. 
This study showed that both ANN and ANFIS modelling have good prediction capability of biogas volume 
produced in a given condition. ANN had R² value of 0.77704 at its best topology meanwhile ANFIS had R² 
value of 0.81209 at its best configuration, showing better performance than ANN. In order to have a better 
knowledge of all the variables influences, it would be desirable to acquire more data to input in the networks. 
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