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Flame-formed just-nucleated carbon nanoparticles, with sizes of about 2-10 nanometers, have been the object 
of increasing interest over the last decades not only because of environmental concerns but also as new 
procedure for synthesis of engineered nanoparticles. In this work, we present an experimental study on 
synthesis and characterization of carbon nanoparticles generated in a laminar premixed ethylene/air flame. 
The production of carbon nanoparticles of different sizes and properties is achieved by changing the particle 
residence time in the flame, i.e., collecting the carbon nanoparticles at different heights above the burner. 
Particle size distributions, Raman, UV-visible and electron paramagnetic resonance (EPR) spectroscopies 
have been used to characterize the sampled particles. The size of the particles increases as the residence 
time in the flame increases, the particle size distributions changing from a unimodal to bimodal. Chemical and 
structural modifications are retrieved by Raman and EPR analysis. Raman spectra show the G and D bands, 
typical of disordered carbonaceous materials. Their relative intensity and band position changes during the 
growing process and are used as index of structural changes. EPR spectroscopy, a powerful tool to probe 
electronic properties of carbon-based materials, reveals the presence and superposition of multiple 
paramagnetic species. Persistent carbon-centered aromatic radicals are detected for all the sampled particles 
and an abrupt change in the EPR signal is observed as the particle distribution changes from monomodal to 
bimodal. EPR indicate a three-dimensional structural organization when larger particles are formed. Optical 
proprieties are retrieved by UV-visible spectroscopy which, combined to Raman and EPR spectroscopy, 
seems to be powerful diagnostics to monitor particle clustering and to control the process of engineered 
carbonaceous nanoparticle production. 

1. Introduction 

Just-nucleated carbon nanoparticles, CNPs, in flame have been the object of several studies in the last 
decades. Most of these studies have been driven by human health and environmental/climate change issues 
(Bond et al., 2013; De Falco et al., 2017; Gualtieri et al., 2008). These nanoparticles have also aroused the 
interest of scientific community because of the possibility to use them as potential new low-cost materials with 
a very large application fields (Li et al., 2016). Under controlled synthesis conditions, these CNPs may be 
produced and functionalized to form desirable materials. The CNPs synthesis process, from the incomplete 
combustion of hydrocarbons, start with the formation of polycyclic aromatic hydrocarbon (PAH), high 
molecular mass compounds that act as particle precursors. During the growing process, PAHs begin to 
assemble into clusters of few nanometers size, i.e., 2-3 nm (Commodo et al., 2018), which growth to larger 
particles changing the residence time in the flame reactor.  
In this study, CNPs have been generated in a laminar premixed ethylene/air flame with an atomic ratio C/O = 
0.67 (equivalence ratio Ф = 2.03). The physicochemical characterization of the CNPs is performed on-line by 
differential mobility analysis (DMA), to gain information about change in particle size distributions (PSDs) as a 
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function of different heights above the burner (HABs), and off-line by Raman spectroscopy, UV-visible 
spectroscopy and electron paramagnetic resonance (EPR) spectroscopy, in order to gain structural and 
chemical information on the synthetized nanoparticles. The aim of this research is to study structural, chemical 
and optoelectronic properties of the flame-formed CNPs to pave the way for a better control on the process of 
engineered carbonaceous nanoparticle production. 

2. Experimental  

A premixed laminar ethylene-air flame was stabilized on a water cooled sintered bronze McKenna burner. The 
cold gas stream velocity was 9.8 m/s and the carbon to oxygen (C/O) atomic ratio was set at 0.67, 
corresponding to a flame equivalence ratio Ф of 2.01. On-line analysis was performed by means of a 
differential mobility analyzer (DMA) system, more details on the experimental procedure can be found in 
previous works (Commodo et al., 2015). The combustion products are sampled through a very small orifice, 
i.e., 200 μm, located on the bottom side of the probe and rapidly mixed with N2, thus providing a dilution ratio 
of 1:3000 that prevents particles from coagulating and allows quenching of the chemical reactions throughout 
the sampling line (Commodo et al., 2016). Off-line analyses were performed on particles sampled with a 
tubular probe (similar to the one used for PSDs measurements) and collected on quartz filters (Whatman QM-
A Quartz Microfiber Filters, with diameter of 47 mm) placed on-line in a filter holder (Shulz et al., 2018). Total 
sampling time for each filter was about 7 hours. Particles collected on the Quartz filters were then analyzed by 
Raman spectroscopy using a Horiba XploRA Raman microscope system equipped with a 100×objective 
(NA0.9, Olympus). The laser source was a frequency doubled Nd:YAG laser (λ = 532 nm) and an infrared 
laser (λ = 785 nm). The power of the excitation laser beam, the exposure time and the other instrumental 
parameters were opportunely adjusted to avoid structural changes of the sample due to thermal 
decomposition and to ensure the best resolution. Spectra were obtained with a laser beam power of 1 %, and 
an accumulation exposure time of 5 cycles of 30 s each. Finally, all the spectra were baseline corrected and 
normalized to the maximum of the G-peak, around 1600 cm−1. In addition, Raman spectra of commercially 
available carbon-based material have been also measured. These include: carbon black (CB), activated 
carbon (AC) and defective graphite (DG). UV–visible absorption spectroscopy was performed on CNPs 
thermophoretically collected on quartz substrates. The UV–visible absorption spectra were recorded with an 
Agilent UV–Vis 8453 spectrophotometer. The optical band gap, i.e., the energy gap between the highest 
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), of the combustion 
formed particles was determined from the measured absorption spectra using the well know Tauc’s 
procedure. (Tauc et al., 1996). EPR spectroscopy experiments of soot particles collected on the quartz filters 
were carried out by means of X-band (9 GHz) Bruker Elexys E-500 spectrometer (Bruker, Rheinstetten, 
Germany), equipped with a super-high sensitivity probe head. Defined sections of quartz filters were coaxially 
inserted in a standard 8 mm quartz sample tube and the measurements were performed at 25 °C. The 
instrumental settings were as follows: sweep width, 100 G; resolution, 1024 points; modulation frequency, 100 
kHz; modulation amplitude, 1.0 G. EPR spectra were recorded at an attenuation value of 15 dB and 128 scans 
were accumulated to improve the signal-to-noise ratio. The g-factor values were evaluated by means an 
internal standard (Mg/MnO) (Yordanov and Lubenova, 2000) which was inserted in the quartz tube co-axially 
with the samples. The quantitative analysis of the EPR spectra was specifically realized by determining the 
signal line width, ∆B, measured as peak-to-peak distance of the first-derivative signal (instrumental output), 
while the determination of the Gaussian and Lorentzian contributions to the line-shape was obtained by 
estimating the ∆B1/2/∆B ratio, where ∆B1/2 is the half-height width of the EPR absorption signal. In all the 
cases examined in the present work, the line shape features were estimated and reported as percentages of 
the Lorentzian character (Raquejo et al., 1992). 

3. Results 

Particle size distributions measured by DMA system along the flame axis have been performed and reported 
in a previous work (Commodo et al., 2015). By increasing the HABs, the PSDs showed an evolution from a 
unimodal distribution, characterized by a mean particles size between 2 and 3 nanometers, to a bimodal 
distribution, characterized by the presence of an additional mode in the size range between 4 and 10 
nanometers. The shift from unimodal to bimodal distribution occurs between 8 mm and 9 mm. Information on 
the chemical and structural modification of carbonaceous nanoparticles were obtained by Raman 
spectroscopy. The Raman spectra of soot were collected in the first order Raman region, comprised between 
1000 cm−1and 2000 cm−1, as a function of HABs. Acquired spectra obtained by using two different excitation 
wavelengths, i.e., λ = 532 nm and λ = 785 nm, are shown in Figure 1. All the measured spectra present the 
typical characteristics of any disordered carbonaceous materials for which a thorough description is reported 

62



elsewhere (Minutolo et al., 2014). As Figure 1 shows, all first order spectra present one band centered at 
about 1600 cm-1 named G band, and the other centered at about 1350 cm-1 named D band. 

 

Figure 1: Raman spectra at several heights above the burner. On the left, collected spectra at λ0=532 nm; on 
the right, collected spectra at λ0=785 nm. The Raman spectra have been normalized on the G peak after 
subtracting the photoluminescence background.  

Activation of the Raman D mode, at ~1350 cm-1, is due to the presence of defects in the sp2 aromatic network, 
prohibited in the perfect hexagonal lattice (Ferrari and Basko, 2013). Conversely, the G band, at ~1600 cm-1, 
is due to every sp2 bond and is mostly insensitive to defects. These bands change in width and position of the 
maximum as function of the different carbon structures. It is worth noticing that spectra show other Raman 
features as some weak shoulders of D ad G bands. The major differences in the spectra of the CNPs as a 
function of HABs consist in changes in the relative intensity of the D and G peaks and in the bands position. 
With regard to relative intensity, at λ0=785nm the D band intensity is greater than G band one. The 
dependence of the I (D)/I (G) ratio on the photon energy of the excitation beam is caused by a deviation of the 
D band intensity from the dependence predicted by the Raman scattering. This is because, unlike G, D band 
is very sensitive to the resonance Raman effect and the transition probability shows a great dependence on 
laser excitation energy. The relative intensity of the D and G band ratio, i.e., I (D)/I (G) is shown in Figure 2.  
 

 

Figure 2: I (D)/I (G) ratio of soot particles collected at several HABs and carbon-based materials 

To better understand the shown trends, commercial carbon black (CB), activated carbon (AC) and defective 
graphite (DG) have been also included in Figure 2. AC and CB contain sp2 domains of different size in the 
order of few nm. Defective graphite consists in carbon atom vacancies in an otherwise perfect graphite lattice 
leading to a small amount of disorder made of sp3 carbon atoms, breaking the contiguity of the aromatic 
structure. As shown in Figure 2, the I (D)/I (G) ratio of the flame-formed CNPs is slightly increasing with HAB, 
approaching that of AC and CB, and is strongly different from DG. It is well known that I(D)/I(G) ratio is related 
to the average size of the aromatic units or clusters forming the carbon materials, La (Ferrari and Robertson, 
2001). For graphite and nano-graphite the intensity ratio I (D)/I (G) has been shown to be inversely 
proportional to La (Tuinstra and Koenig, 1970). Such functional dependence has been successively verified up 
to a minimum La, of about 2-3 nm, where I (D)/I (G) reaches a maximum value (Ferrari and Robertson, 2001). 
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When La further decreases, I (D)/I (G) decreases to zero. For flame-generated soot particles, the low-La 
regime, i.e., La < 2-3 nm, usually applies, for which the following empirical expression has been found to 
correlate La with the relative intensity of the Raman bands (Ferrari and Basko, 2013): Lୟଶሺnmଶሻ ൌ 5.4 ∙ 10ିଶ ∙ EସሺeVସሻ IሺDሻIሺGሻ (1) 

where EL is the energy of the incident photon.  
According to this equation, the ratio of the two curves in Figure 2 is expected to be equal to the fourth power of 
the respective photon energy ratio. This is approximately verified by DG whereas CNPs, CB and AC deviate 
from this trend. Such discrepancy can be indicative of a lowering of the double resonance mechanism in 
CNPs, CB and AC. Interestingly, such relaxation effect seems to be more evident the higher HAB, and 
deserve further investigation. It is relevant to note that using excitation wavelength in the visible, about 532 
nm, the dependency of I(D)/I(G) on La (Eq. 1) has been validated for a large variety of disordered carbon by 
many investigations (Ferrari and Basko, 2013) and the evaluation of La can be considered reliable. The results 
obtained for the different soot particles, reported in Figure 3, show a slight increase of La as function of HAB. 
This trend is an indication of larger aromatic islands inside particles at increasing residence time.  
 

 

Figure 3: La from the Raman spectra of CNPs collected at several HABs. 

From UV-visible absorption spectra, Tauc plots have been derived and the values of Eg have been obtained 
by extrapolation to zero of the linear trend. The plots of (Abs *E) 1/2 vs. E, where Abs is the measured 
absorbance and E is the photon energy, for the particles at HAB= 7 mm, HAB= 9 mm and HAB= 14 mm are 
reported in Figure 4. 
 

 

Figure 4: Tauc plots (note: Abs is the measured absorbance and E is the photon energy) and related energy 
of band gap values of CNPs at: HAB=7 mm, HAB=9 mm, HAB=14 mm. 

As reported in Figure 4, the Eg of the CNPs at HAB=7 mm, 9 mm and 14 mm is 1.3 eV, 1.0 eV and 0.5 eV 
respectively, thus showing a decreasing trend as function of the residence time. This effect can be only 
partially justified by the increase in the aromatic island length La shown in Fig. 3 but it should be also ascribed 
to the change of particle size, which is increasing from 2-3 nm up to tens of nm.  
EPR spectra of soot collected during the growth process are reported in Figure 5 and their relative parameters 
are reported in Table 1. 
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Figure 5: EPR spectra of soot particles on quartz filters at 7 mm, 9 mm and 14 mm. 

As reported in a recent work (Vitiello et al., 2018), the EPR spectra of flame-formed CNPs show a single peak 
at g-factor ranging between 2.0025-2.0028 (±0.0003). The g-value is defined by the type of radical, i.e. carbon 
radical, oxygen radical, metal radical, carbon near oxygen radical, and by the chemical environments of 
unpaired electrons. The obtained value is typical of persistent carbon radicals (Valavanidis et al., 2008). 
Figure 5 shows a different line-widths of the three signals, also reported in Table 1, suggesting an evolution of 
the paramagnetic signal as the particle size distribution evolves from monomodal to bimodal. Particularly, 
particle evolution from 7 mm to 9 mm is characterized by the narrowing of the EPR spectrum while the 
spectrum recorded at 14 mm is characterized again by a broader signal. There is a correspondence between 
width and type of the lineshape: broad signal with Gaussian and narrow signal with Lorentzian. The broad line-
shape, i.e. Gaussian contribution, of the 7mm sample could be due to the presence and superposition of not 
interacting unpaired electrons into the particles (Herring et al., 2013). Conversely, the narrow signal of the 9 
mm sample, associated to a high Lorentzian contribution, is related to the interaction between unpaired 
electrons (Ingram, 1958) and indicate the change in the structural organization as due to delocalization of π-
electrons (Pilawa et al., 2005). These electrons can interact to form more ordered, stacked structures in a 
three-dimensional organization (Vitiello et al., 2018). At higher HAB the modified structures of particles due to 
coagulation/coalescence and surface mass addition lead to a new organization of paramagnetic centres, 
causing the signal broadening at 14 mm, as shown in Figure 5. 

Table 1: EPR spectral parameters of soot particles collected at different HABs. 

HAB, mm g-factor (± 0.0003) ∆B (G) (± 0.2) Lorentzian % 
7 2.0027 7.6 38 
9 2.0025 2.8 98 

14 2.0027 6.2 28 

4. Conclusions 

In this work, a characterization of carbonaceous particles, produced in a laminar premixed flame has been 
performed. In order to characterize these compounds, the analytic investigations have comprised PSDs 
measurements, Uv-vis spectroscopy, Raman analysis and EPR spectroscopy. As the residence time in flame 
increases, the PSD changes from unimodal to bimodal and the average particle size grow from 2-3 nm up to 
tens of nm. In addition to the particle size, the nanoparticles go through chemical/structural modifications. The 
analysis of the measured Raman spectra shows that the two main peaks, the D and G bands, change in terms 
of relative intensity and band position following the evolution of the soot particles toward a more ordered 
structure during the growing process. Further details on the structural change and on the evolving organization 
of nanoparticles have been obtained by EPR and UV-visible data. EPR spectroscopy turned out to be a 
powerful tool to probe electronic properties of carbon-based materials, revealing the presence and 
superposition of multiple paramagnetic species. These unpaired electrons have a key role in structural 
organization of materials. Persistent carbon-centered aromatic radicals are detected for all the sampled 
particles. Noticing an abrupt change in the EPR signals and parameters, in correspondence of the shift from 
monomodal to bimodal size distributions and at higher residence time it is possible to hypothesize a more 
ordered three-dimensional structural organization when larger particles are formed. These structural changes 
are confirmed by UV-visible spectroscopy and Band Gap analysis, which are sensitive to both size effects and 
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aromatic growth. These results are useful for a deeper understanding of flame formed CNP proprieties in the 
perspective of producing these materials as engineered nanomaterial in various fields. 
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