

VOL. 72, 2019



DOI: 10.3303/CET1972058

#### Guest Editors: Jeng Shiun Lim, Azizul Azri Mustaffa, Nur Nabila Abdul Hamid, Jiří Jaromír Klemeš Copyright © 2019, AIDIC Servizi S.r.l. **ISBN** 978-88-95608-69-3; **ISSN** 2283-9216

# Fabrication of SWCNTs Modified TiO<sub>2</sub> Nanocomposite towards Enhanced Photocatalytic Carbon Dioxide Reduction to Fuels under Visible Light

Beenish Tahir, Muhammad Tahir\*, Noraishah Saidina Amin, Hajar Alias

Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia. mtahir@cheme.utm.my

In this study, fabrication of single wall carbon nanotubes modified titanium dioxide (SWCNTs/TiO<sub>2</sub>) composite catalyst for selective and enhanced photocatalytic CO<sub>2</sub> reduction to fuels has been investigated. The samples were synthesized by a modified one-pot sol-gel method and were characterized by X-ray diffraction (XRD), Scanning Electrons Microscopy (SEM) and Photoluminescence (PL) Spectroscopy. The pure anatase phase with reduced crystal size and hindered charges recombination was obtained by modifying TiO<sub>2</sub> with SWCNTs. The performance of newly developed nano-catalyst was investigated for photo-induced CO<sub>2</sub>-hydrogen reduction under visible light irradiations. The products detected were CO, CH<sub>4</sub> and CH<sub>3</sub>OH with appreciable amounts of C<sub>2</sub>-C<sub>3</sub> hydrocarbons. The yield of CO as the main product over 5 wt% SWCNTs/TiO<sub>2</sub> was 1,220 µmole g-cat.<sup>-1</sup> h<sup>-1</sup>, a 5.35 times more than the pure TiO<sub>2</sub> NPs. Similarly, yield of methanol of 23.4 µmole g-cat.<sup>-1</sup> h<sup>-1</sup> was detected, 6.5 folds the amount produced over the pure TiO<sub>2</sub> NPs. The SWCNTs found to be efficient to enhance TiO<sub>2</sub> activity due to its ability to capture visible light irradiations with proficient charges separations over the TiO<sub>2</sub> surface. The higher interaction between SWCNTs/TiO<sub>2</sub>, efficient adsorption-desorption and hindered charges recombination rate promoted the photoactivity and products selectivity. The reaction mechanism to understand the role of SWCNTs in TiO<sub>2</sub> for CO<sub>2</sub>-hydrogen conversion is also deliberated.

# 1. Introduction

Global warming effects due to excessive release of  $CO_2$  and energy crises are the major challenges facing by the mankind (Nasir et al., 2018). The level of  $CO_2$  in the atmosphere has been increasing every year because of combustion of fossil fuels, burning of forest and deforestation by human activities (Low et al., 2018). Among the different alternatives, utilization of  $CO_2$  through chemical process is a promising approach for the production of chemicals and fuels. However, higher stability of  $CO_2$  molecule demands input energy which leads to uneconomical process (Yang et al., 2016). One promising pathways to both problems is photocatalytic  $CO_2$ reduction under visible light irradiations. Thus, photocatalytic  $CO_2$  conversion by the use of light irradiation is an attractive pathway which has potential to convert solar energy and  $CO_2$  to high energy content compounds such as  $CH_4$ ,  $CH_3OH$  and hydrocarbons (Xiong et al., 2018).

In the field of photocatalytic CO<sub>2</sub> reduction applications, in most of research work, water has been used as the reducing agent, yet H<sub>2</sub>O is hardly reducible (Shao et al., 2018). Therefore, CO<sub>2</sub> conversion by H<sub>2</sub>O is not significant and selectivity is not appreciable due to wide range of products distributions (Olivo et al., 2015). Among the different reductants, hydrogen (H<sub>2</sub>) has been reported as an efficient reductant for photocatalytic CO<sub>2</sub> conversion via photocatalytic reverse water gas shift (PRWGS) reaction (Tahir et al., 2015). During the last years, titanium dioxide (TiO<sub>2</sub>) has been employed as a semiconductor material due to its benefits of low cost and appropriate band structure, yet has lower photoactivity. (Paulino et al., 2016). The lower performance of TiO<sub>2</sub> is because of fast charges recombination rate while active only under UV-light irradiations (Tahir, 2018). TiO<sub>2</sub> photoactivity can be improved by loading with metals and modifying with low cost and renewable materials and using H<sub>2</sub> as reductant (Tahir et al., 2015).

Paper Received: 12 July 2018; Revised: 16 September 2018; Accepted: 27 October 2018

Please cite this article as: Tahir B., Tahir M., Amin N.S., Alias H., 2019, Fabrication of sworts modified to 2 nanocomposite towards enhanced photocatalytic carbon dioxide reduction to fuels under visible light, Chemical Engineering Transactions, 72, 343-348 DOI:10.3303/CET1972058

Recently, carbon based materials, in particular, carbon nanotubes (CNTs) such as electron (e<sup>-</sup>) transportation and trapping and provision of bridge for the flow of photo-excited electrons that helps to hinder the recombination of charge carriers. More importantly, carbon nanotubes exhibit novel electrical, thermal and optical properties with high surface area that makes them conductive under visible spectrum (Umer et al., 2019). Carbon nanotubes have high surface area, reduce the rapid recombination of electron/hole pairs and assists in harvesting the solar light, thus have capacity to enhance the photocatalytic activity under visible light (Yousefzadeh et al., 2013). Researchers have confirmed that the electron transportation properties of CNTs provide a comfortable pathway to direct the flow of photo-generated electron/hole pairs, which increases the life-span of charge carriers; generated by photo-catalyst upon solar light irradiations. Among the CNTs, single wall carbon nanotubes (SWCNTs) has much attractions due to their characteristics to capture and transport electrons efficiently in the SWCNTs/TiO<sub>2</sub> composite samples (Li et al., 2016). The use of SWCNTs/TiO<sub>2</sub> composite for photocatalytic CO<sub>2</sub> reduction by H<sub>2</sub> would be an attractive pathway for sustainable fuels production. However, there is no report available on the use of SWCNTs/TiO<sub>2</sub> composite catalyst in RWGS reaction for selective CO and hydrocarbons production.

In this study, fabrication of SWCNT modified TiO<sub>2</sub> structure for photocatalytic CO<sub>2</sub> reduction by H<sub>2</sub> reducing agent via photocatalytic reverse water gas shift (RWGS) reaction under visible light irradiation has been investigated. The nanocatalysts were synthesized using single step sol-gel approach and were characterized with XRD, FESEM and PL characterization techniques. The performance of photo-catalysts was tested in a fixed bed photoreactor under visible light irradiations. The main products detected were CO, methanol and C<sub>1</sub>-C<sub>3</sub> hydrocarbons. The reaction mechanism was proposed based on the experimental results.

## 2. Experimental

#### 2.1 Catalyst preparation

For the synthesis of SWCNTs/TiO<sub>2</sub> composites, one-pot single step sol-gel method was used. Typically, 30 mL isopropanol was placed in a flask and 10 mL titanium solution was dispersed under magnetic stirring. The hydrolysis process was conducted by adding dropwise solution of 0.1 M acetic acid. This process of hydrolysis was continued by 24 h before modifying with SWCNTs. For purification SWCNTs were dispersed in 6 M HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> mixture, ultra-sonicated for 60 min, and then washed with deionized water until the pH value reached to 7.0 before dried in the oven for 12 h. Subsequently, functionalized CNTs dispersed in isopropanol were added into titanium sol. Finally, samples were dried at 100 °C overnight and calcined at 500 °C for 5 h under N<sub>2</sub> flow. Powder X-ray diffraction (XRD; Bruker D8 advance diffract meter, 40 kV and 40 mA) with Cu- Kα radiation ( $\lambda$ = 1.54 A°) was used to determine crystalline phase. The morphology was investigated using scanning electron microscopy (SEM) carried out with JEOL JSM6390 LV SEM. Photo-luminance (PL) spectra of the samples were carried out by using Raman Spectrometer (Lab RAM HR Evolution, HORIBA) with 325 nm emitting laser, which act as an excitation source.

#### 2.2 Photoactivity test

The reactor consists of a stainless-steel cylindrical vessel with a length 5.5 cm and a total volume 150 cm<sup>3</sup>. The lamp used was a 300 W Xe lamp for visible light source located at the top of the reactor glass window. The 0.5 g catalyst was uniformly distributed at the bottom of reactor for photo-activity test. Prior to feeding, the reactor chamber was purged using purified helium (He) flow, then a mixture of gases (CO<sub>2</sub>, H<sub>2</sub> and He) was constantly streamed through the reactor for 1 h to saturate the catalyst. Before turning on the lamp, pressure inside the reactor was increased to 0.2 bars above the atmospheric by closing the outlet valve and finally inlet valve was closed for batch mode experiments. The temperature inside the reactor of 100 °C was maintained using temperature controller. Similarly,  $CO_2/H_2$  feed ratio of 1.0 was used in all the experiments using mass flow controllers (MFC). On-line gas chromatograph (GC-Agilent Technologies 6890 N, USA) was used for products analysis.

#### 3. Results and discussion

#### 3.1 Catalyst characterization

Figure 1a presents XRD spectra of pure TiO<sub>2</sub> and SWCNTs/TiO<sub>2</sub> samples, which confirms a pure crystalline and anatase phase. The XRD pattern of SWCNTs presents reflection of (0 0 2) and (1 0 1) at  $2\theta = 25.93^{\circ}$  and  $42.74^{\circ}$ , evidently due to graphitic structure of CNTs. However, all these peaks dispersed in CNTs/TiO<sub>2</sub> composite samples but TiO<sub>2</sub> persisted its original reflection. Besides, TiO<sub>2</sub> peaks in CNTs-loaded TiO<sub>2</sub> samples become broader and weaker, which revealed controlled crystal growth of TiO<sub>2</sub> NPs with the mesoporous structure.

For understanding the trapping and transfer property of electron-hole pairs in modified photo-catalysts, photoluminescence (PL) analysis can be employed. Figure 1b presents  $TiO_2$  and 5 wt% SWCNTs loaded  $TiO_2$  samples peaks, excited at wavelength 325 nm. It is evidenced that PL spectra intensity depends on the photo-generated charges recombination. Obviously, higher PL intensity was obtained in the pure  $TiO_2$  which is in accordance of higher charges recombination rate. However, a significant decreased in PL intensity was observed with SWCNTs loaded  $TiO_2$  sample. This low PL intensity indicates a decrease in charges recombination rate due to trapping of electrons by SWCNTs. Thus, addition of SWCNTs into  $TiO_2$  provides faster charges separation which will enable higher photocatalytic  $CO_2$  reduction efficiency.

The structure and morphology of  $TiO_2$  and SWCNTs/TiO\_2 samples is presented in Figure 2. The uniform size with spherical structure of  $TiO_2$  nano-particles can be seen in Figure 2a. Figure 2b presents SEM analysis of SWCNTs/TiO\_2 sample. Evidently, there was good interaction between  $TiO_2$  NPs and carbon nanotubes, confirming efficient charges separation process, thus producing SWCNTs/TiO\_2 nanocomposite using sol-gel method.



Figure 1: (a) X-ray diffraction patterns of TiO<sub>2</sub>, SWCNTs and SWCNTs/TiO<sub>2</sub> catalysts; (b) Photoluminscience analysis of TiO<sub>2</sub> and 5 wt% SWCNTs modified TiO<sub>2</sub> samples.



Figure 2: SEM images of TiO<sub>2</sub> and TiO<sub>2</sub>/SWCNTs samples: (a) SEM image of TiO<sub>2</sub> nanoparticles, (b) SEM image of TiO<sub>2</sub>/SWCNTs sample.

## 3.2 Photocatalytic CO<sub>2</sub> reduction with H<sub>2</sub>

Firstly, quality control experiments were conducted in the presence of photocatalyst and light irradiations but in the absent of reactants. Using all types of systems, in the products gas mixture, carbon containing compounds were not detected without reactants or light irradiations. Therefore, all the products would be originated during  $CO_2$  reduction process under light irradiations.

The performance of SWCNTs loaded TiO<sub>2</sub> for photocatalytic CO<sub>2</sub> reduction with H<sub>2</sub> with the production of CH<sub>4</sub>, CH<sub>3</sub>OH, CO and hydrocarbons under visible light irradiations is presented in Figure 3. Figure 3a presents the production of CH<sub>4</sub>, CH<sub>3</sub>OH and CO over TiO<sub>2</sub> and SWCNTs-loaded TiO<sub>2</sub> samples. Obviously, production of CO was detected as the main products while its yield over SWCNTs/TiO<sub>2</sub> was significantly higher than using pure TiO<sub>2</sub>. Production of methanol was greatly improved while methane was reduced using SWCNTs loaded TiO<sub>2</sub> samples. This confirmed that photocatalytic CO<sub>2</sub> reduction by H<sub>2</sub> via RWGS reaction is a favourable process which has improved the productivity for selective products. However, significantly improved efficiency was due to larger surface area, efficient trapping and transport of electrons by SWCNTs and visible light absorption. Figure 3b demonstrates the production of hydrocarbons over TiO<sub>2</sub> and SWCNTs-loaded TiO<sub>2</sub> samples. Among the hydrocarbon, C<sub>2</sub>H<sub>4</sub> was produced in appreciable amounts with lower amounts of C<sub>2</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub>. Evidently, production of hydrocarbons was significantly higher in the presence of SWCNTs/TiO2 samples compared to pure TiO<sub>2</sub> NPs.



Figure 3: Performance analysis of TiO2 and SWCNTs/TiO2 activity for CO2 reduction with H2 to CO, CH3OH and hydrocarbons at 100 °C, time 2 h and CO2/H2 feed ratio 1.0; (a) Production of CO, CH4 and CH3OH; (b) Production of hydrocarbons.

The yield rates and selectivity of different products over TiO<sub>2</sub> and SWCNTs/TiO<sub>2</sub> with their selectivity are presented in Table 1. The yield of CO over 5 wt% SWCNTs/TiO<sub>2</sub> was 1,220 µmole g-cat.<sup>-1</sup> h<sup>-1</sup>, a 5.35 times the pure TiO<sub>2</sub> NPs. Similarly, yield of methanol of 23.4 µmole g-cat.<sup>-1</sup> h<sup>-1</sup> was detected, 6.5 folds the amount produced over pure TiO<sub>2</sub> NPs. Similar trends in enhanced SWCNTs/TiO<sub>2</sub> photo-activity was observed in hydrocarbons production. The enhanced in photoactivity was due to more production over TiO<sub>2</sub> increased from 85.03 to 95.19 % in 5 wt% SWCNTs loaded TiO<sub>2</sub> samples. These results show that CO<sub>2</sub> can efficiently be converted to CO using SWCNTs loaded TiO<sub>2</sub> catalyst via RWSG reaction. Similar observations have been reported over Cu-modified g-C<sub>3</sub>N<sub>4</sub> for photocatalytic CO<sub>2</sub>-CO conversion applications (Shi et al., 2018). The enhanced photocatalytic hydrogen production over MoSe<sub>2</sub>-modified WO<sub>3</sub> loaded with CNTs have been reported previously in the literature (Tahir et al., 2018).

Table 1: Summary of yield rates and selectivity of products over TiO<sub>2</sub> and SWCNTs/TiO<sub>2</sub> samples

| Samples                    |                                              | Yield rate      |       |          |          |          |       | Selectivity     |       |
|----------------------------|----------------------------------------------|-----------------|-------|----------|----------|----------|-------|-----------------|-------|
|                            | (µmole g-cat <sup>-1</sup> h <sup>-1</sup> ) |                 |       |          |          |          |       | (%)             |       |
|                            | CO                                           | CH <sub>4</sub> | CH₃OH | $C_2H_4$ | $C_2H_6$ | $C_3H_8$ | CO    | CH <sub>4</sub> | CH₃OH |
| TiO <sub>2</sub>           | 230                                          | 35.8            | 3.6   | 0.24     | 0.57     | 0.28     | 85.03 | 13.24           | 1.33  |
| 5% SWCNTs/TiO <sub>2</sub> | 1,220                                        | 30.4            | 23.4  | 3.64     | 2.29     | 1.89     | 95.19 | 2.37            | 0.28  |

#### 3.3 Reaction mechanism

During the photocatalytic reverse water gas shift reaction,  $CO_2$  is reacted with  $H_2$  for the production of CO,  $CH_3OH$  and hydrocarbons as the potential products over SWCNTs/TiO<sub>2</sub> samples. Therefore, possible reaction mechanism is illustrated in Eqs (1)-(6).

$$TiO_2 \longrightarrow e^{-} + h^{+}$$
 (1)

$$SWCNT + e^{-} \longrightarrow SWCNT - e^{-}$$
<sup>(2)</sup>

$$CO_2 + H_2 \longrightarrow CO + H_2O$$
 (RWGSR) (3)

$$CO_2 + 3H_2 \longrightarrow CH_3OH + H_2O \tag{4}$$

$$CO_2 + 2H_2 \longrightarrow CH_4 + O_2$$
 (5)

$$2CO_2 + 3H_2 \longrightarrow C_2H_6 + 2O_2 \tag{6}$$

First, electron-hole pairs were produced over the TiO<sub>2</sub> surface under visible light irradiation as explained in Eq (1). The photo-generated electrons were trapped by SWCNTs in the composite of SWCNTs/TiO<sub>2</sub>, resulting in their efficient separation as explained in Eq(2). The electrons were transferred toward CO<sub>2</sub> for its reduction while holes were consumed for hydrogen oxidation. The oxidation and reduction process promoted CO<sub>2</sub> reduction by H<sub>2</sub> via RWGS reaction (Eq (3)). As there was efficient production of electrons due to SWCNTs, H<sup>+</sup> radicals and active electrons effectively reduced CO<sub>2</sub> to CH<sub>3</sub>OH, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> as explained in Eqs (4) - (6). Accordingly, CO was the main product with selectivity above 95%, confirming favorable RWGS reaction for CO<sub>2</sub> reduction to CO over SWCNTs/TiO<sub>2</sub> nanocomposites under visible light irradiations.

The proposed schematics of photocatalytic CO<sub>2</sub> reduction by H<sub>2</sub> over SWCNTs/TiO<sub>2</sub> catalyst under visible light irradiations is depicted in Figure 4. It is obvious that light irradiations strike over the catalyst, activated it with the production of electrons and holes ( $e^{-}/h^{+}$ ) pairs. These photo-generated charges react with CO<sub>2</sub> and H<sub>2</sub> for the production of CO. The production of CO as the main products would be explained on the base of TiO<sub>2</sub> conductance band and CO<sub>2</sub>/CO reduction potential. As the TiO<sub>2</sub> CB (-0.50 V) is higher than CO<sub>2</sub>/CO reduction potential (-0.48 V), the production of CO would be possible (Shakeri et al., 2015). Significantly enhanced photocatalytic activity of CO<sub>2</sub> conversion to CO was due to visible light responsive, faster charges separation and appropriate band structure for the production of chemicals and fuels. On the other hand, production of CH<sub>3</sub>OH and hydrocarbons would be due to more production of electrons and their efficient utilization in CO<sub>2</sub> reduction process due to SWCNTs/TiO<sub>2</sub> composite sample. Therefore, SWCNTs is promising for electron trapping and transporting materials and could be used in solar energy applications for selective fuels production.



Figure 4: Schematic presentation of photocatalytic RWGS reaction over SWCNTs/TiO<sub>2</sub> photocatalyst.

## 4. Conclusions

In this study, successful fabrication of SWCNTs loaded TiO<sub>2</sub> nanocomposites for photocatalytic CO<sub>2</sub> reduction by H<sub>2</sub> under visible light irradiation has been reported. The newly developed composite catalysts found efficiency for photocatalytic CO<sub>2</sub> reduction to CO, CH<sub>4</sub>, CH<sub>3</sub>OH and hydrocarbon fuels. The yield and selectivity was promisingly improved over the TiO<sub>2</sub> due to efficient charges separation by SWCNTs. The highest yield rate of CO as the key product observed over SWCNT/TiO<sub>2</sub> was 1,220 µmole-g-cat <sup>-1</sup>h<sup>-1</sup> at selectivity 95%, much higher when compared with pure TiO<sub>2</sub> photo-catalyst. Similarly, an appreciable amount of CH<sub>3</sub>OH and hydrocarbons were obtained in SWCNTs loaded TiO<sub>2</sub> samples. This significant improvement in TiO<sub>2</sub> photoactivity with SWCNTs loaded TiO<sub>2</sub> was evidently due to visible light responsive and faster charges separation. Therefore, composite catalyst synthesized in this study reveals efficient photocatalytic behavior for solar energy assisted fuels production.

## Acknowledgements

The authors would like to extend their deepest appreciation to Ministry of Education (MOE) Malaysia and Universiti Teknologi Malaysia (UTM), Malaysia for the financial support of this research under FRGS (Fundamental Research Grant Scheme, Vot 4F876) and Research University Grant (Vot 17H06).

#### Reference

- Li L., Chao W., Mengling Ni., Chii S., 2016, Enhanced photocatalytic activity of TiO<sub>2</sub>/single-walled carbon nanotube (SWCNT) composites under UV-A irradiation, Separation and Purification Technology, 169, 273-278.
- Low J., Qiu S., Xu D., Jiang C., Cheng B., 2018, Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO<sub>2</sub> nanotube arrays for photocatalytic CO<sub>2</sub> reduction, Applied Surface Science, 434, 423-432.
- Nasir S., Tahir M.,, Khairiraihanna J., Thanabalan M.,Murid H., 2018, A critical review on TiO<sub>2</sub> based photocatalytic CO<sub>2</sub> reduction system: Strategies to improve efficiency, Journal of CO<sub>2</sub> Utilization 26, 98-122.
- Olivo A., Trevisan V., Ghedini E., Pinna F., Bianchi C.L., Naldoni A., Cruciani G., Signoretto M., 2015, CO<sub>2</sub> photoreduction with water: Catalyst and process investigation, Journal of CO<sub>2</sub> Utilization, 12, 86-94.
- Paulino P.N., Salim V.M.M., Resende N.S., 2016, Zn-Cu promoted TiO<sub>2</sub> photocatalyst for CO<sub>2</sub> reduction with H<sub>2</sub>O under UV light, Applied Catalysis B: Environmental, 185, 362-370.
- Shakeri J., Farrokhpour H., Hadadzadeh H., Joshaghani M., 2015, Photoreduction of CO<sub>2</sub> to CO by a mononuclear Re(i) complex and DFT evaluation of the photocatalytic mechanism, RSC Adv., 5 (51), 41125-41134.
- Shao K., Wang Y., Iqbal M., Lin L., Wang K., Zhang X., He M., He T., 2018, Modification of Ag nanoparticles on the surface of SrTiO<sub>3</sub> particles and resultant influence on photoreduction of CO<sub>2</sub>, Applied Surface Science, 434, 717-724.
- Shi G., Yang L., Liu Z., Chen X., Zhou J., Yu Y., 2018, Photocatalytic reduction of CO<sub>2</sub> to CO over copper decorated g-C<sub>3</sub>N<sub>4</sub> nanosheets with enhanced yield and selectivity, Applied Surface Science, 427, 1165-1173.
- Tahir B., Tahir M., Amin N.S., 2015, Photoreactor Carbon Dioxide Reduction with Hydrogen in a Continuous Catalytic Monolith Photoreactor, Chemical Engineering Transactions, 45, 259-264.
- Tahir M., 2018, Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO<sub>2</sub> nanocatalyst, Journal of Cleaner Production, 170, 242-250.
- Tahir M., Tahir B., 2016, Dynamic photocatalytic reduction of CO<sub>2</sub> to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO<sub>2</sub> nanocatalysts, Applied Surface Science, 377, 244-252.
- Tahir M.B., Nabi G., Iqbal T., Sagir M., Rafique M., 2018, Role of MoSe<sub>2</sub> on nanostructures WO<sub>3</sub>-CNT performance for photocatalytic hydrogen evolution, Ceramics International, 44 (6), 6686-6690.
- Umer M., Tahir M., Azam, M.U., Jaffar M., 2019, Metals free MWCNTs@TiO<sub>2</sub>@MMT heterojunction composite with MMT as a mediator for fast charges separation towards visible light driven photocatalytic hydrogen evolution, Applied Surface Science 463,747-757.
- Xiong Z., Kuang C.-C., Lin K.-Y., Lei Z., Chen X., Gong B., Yang J., Zhao Y., Zhang J., Xia B., Wu J.C.S., 2018, Enhanced CO<sub>2</sub> photocatalytic reduction through simultaneously accelerated H<sub>2</sub> evolution and CO<sub>2</sub> hydrogenation in a twin photoreactor, Journal of CO<sub>2</sub> Utilization, 24, 500-508.
- Yang M.-Q., Xu Y.-J., 2016, Photocatalytic conversion of CO<sub>2</sub> over graphene-based composites: current status and future perspective, Nanoscale Horizon, 1 (3), 185-200.
- Yousefzadeh S., Reyhani A., Naseri N., Moshfegh A.Z., 2013, MWCNT/WO<sub>3</sub> nanocomposite photoanode for visible light induced water splitting, Journal of Solid State Chemistry, 204, 341-347.