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The purpose of this paper is a numerical study to investigate the effects of external horizontal magnetic field 

on heat transfer characters within a pure molten metal filled a vertical 3D cylindrical crucible. The inner and 

outer walls of annulus are kept at constant temperature and the upper and lower walls are thermally insulated. 

The model is based on magneto hydrodynamic natural-convection theory and low Reynolds number 

approximation. Finite volume approach and fully implicit scheme is adopted to discrete corresponding 

equations. Results have been conducted for three different geometrical sizes, Rayleigh and Hartman 

Numbers. The 3D simulation results indicate a strong relation between heat transfer, the magnetic field 

strength and the aspect ratio of the crucible. In addition, this model shows that the azimuthal distribution of 

velocity and temperature fields affected greatly in crucible in presence of external magnetic field. The model 

has been validated availiable results. The findings of this study are expected to be useful for enhancing the 

design of solidification systems. 

1. Introduction

Solidification processing has been used extensively in metallic alloys and semiconductors industry for many 

years. From the view of production, the final product quality is dependent upon many parameters including 

composition, cooling rate, boundary conditions, body and external forces and the temperature field of the melt 

region. In fact, these parameters could affect the flow patterns in the melt by producing convection flows. In 

addition, the nature of these flows is so that plays significant role on melt/solid front morphology and solidified 

structure. Also, experimental evidences proved that during solidification process such fluid motions in molten 

metal affect performance of final product. Hence, controlling unwanted convection flows in melt is crucial. In 

practice, it is possible to overcome these limitations partially by several methods. An interesting solution is 

applying an external magnetic field to suppress the buoyancy driven flows which referred to Magneto 

hydrodynamics (MHD) problems in the literature.  

Whatever we recognize as main figures of MHD theory refers to Hartmann, Alfvén, and other’s experiments in 

the first half of the twentieth century (Davidson 2001). (Sarris et al., 2010) carried out numerical investigations 

about the problem of transient and turbulent natural convection of the electrically conductive low-Prandtl 

number fluid that driven by horizontal temperature gradients in a vertical cylinder in the presence of a vertical 

magnetic field. An investigation of solidification and melting of gallium in presence of constant magnetic field in 

a rectangular cavity was performed (Charmchi et.al, 2004). (Sankar et al., 2008) studied the effect of magnetic 

field on the driven convection in combination of buoyancy and surface tension forces in a cylindrical annular 

enclosure. (Afrand et al., 2017) investigated a 3D numerical method to analyse the natural convection in a 

cylindrical annulus containing molten potassium under a magnetic field. An experimental study for free 

convection in a vertical annulus was presented by Ejaz and Manzoor (2018). Effects of a bottom heated 

rotating cylinder in a vertical annulus have been experimentally studied with respect to heat transfer 

parameters. (Vasanthakumari and Pondy, 2018) presented a numerical investigation of steady two 

dimensional laminar, boundary layer flow of incompressible, viscous nanofluid with MHD along with heat 

generation and suction effect is considered. (Wang et al., 2017) examined the natural convection heat transfer 

of Al2O3-water nanofluid in a differentially-heated three-dimensional cubic enclosure. The study focuses on the 
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effects of the shape of nanoparticles, nanoparticles volume fraction, and Rayleigh number on the natural 

convection. 

The objective of present study is to investigate the effect of magnitude of magnetic field, Ra number and 

aspect ratio on flow and temperature fields of the molten metal numerically. The other aim of this work is to 

investigate the effect of cancelling the electric induction field in calculations. Most of the MHD studies at 

present are based on regular rectangular shapes and limited studies are carried out using annulus shapes. 

The annulus cavity has received significant attention of researchers due to its applicability in various fields. In 

present study we tried to evaluate the effect of external magnetic field on the flow and temperature fields of an 

electrically conducting molten gallium in a vertical annulus.  

2. Methodology

2.1 Physical model and assumptions 

The problem that considered in this study is depicted schematically in Figure 1 and refers to the three-

dimensional flow in an annulus whose height and width are given by H and D, respectively. It is filled with an 

electrically conducting molten metal. The inner wall (colder side) temperature set to be TC and the outer wall 

(hotter side) is kept at TH so that TH>TC. The other two surfaces (the upper and lower walls) are thermally 

insulated with rigid boundaries. Temperature gradients by two vertical walls cause density changes in molten 

metal and in presence of gravitational forces buoyancy flows are driven. In this problem a uniform external 

magnetic field B0 also is applied in horizontal direction. In order to reduce calculation costs, the set of 

equations will be simplified by some assumptions. The melt flow behaves as a Newtonian incompressible fluid 

and considered to be laminar and steady. The thermo-physical properties of the melt are temperature 

independent except for density of melt that employs the Boussinesq approximation, ρ = ρ0(1 − β(T − T0)) 

where β is volumetric thermal expansion, ρ0 and T0 indicate reference and temperature, respectively. Also, the 

heat dissipation, Joule heating, induced magnetic and electric fields are also neglected. 

Invoking the previous assumptions, the governing three-dimensional mass, momentum, energy and Lorentz 
forces equations are as follows: 
The continuity equation:  

∇. (ρV⃗⃗ ) = 0 (1) 

The momentum equation 

ρ(V⃗⃗ . ∇)V⃗⃗ = ∇P + μ∇2V⃗⃗ + F⃗ boyouncy + F⃗ magnetic
(2) 

The energy equation 

(V⃗⃗ . ∇)T = α∇2T (3) 

The magnetic body force in Eq (2) calculated as 

𝐹 magnetic = 𝐽 × �⃗� 0 (4) 

Also, we assumed that the induced magnetic field produced by the motion of an electrically conducting fluid is 

negligible compared to the applied external magnetic field of Bo. The ratio is defined through the magnetic 

Reynolds number Rm, So Rm<< 1 (Davidson 2001). For small magnetic Reynolds numbers this assumption 

lets to use Ohm’s law for calculation of the electric current density as 

𝐽 = 𝜎(�⃗� + �⃗� × �⃗� 0) (5) 

Where, σ is the electric conductivity of the melt and �⃗� = −𝛻𝜑 is induced electrical field by the motion of 

electrically conducting melt and assumed to be negligible. In present study this melt assumed to be molten 

gallium with thermo physical properties tabulated in table 1. The current density also can be expressed as 

J = σ(urr +uθθ⃗ + uzk⃗ ) × B⃗⃗ 0 (6) 

The initial and boundary conditions are specified as follows 

for t < 0    T = Tini < Tm (7) 

for t ≥ 0 

T = TC > Tm,    ur = uθ = uz = 0     at     r = ri           (8) 
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T = TH > Tm,    ur = uθ = uz = 0     at     r = ro   (9) 

δT

δz
,    ur = uθ = uz = 0     at    z = 0, H   (10) 

Further, in MHD problems resulting flows generally depend on many dimensionless parameters. In this study 

results will discuss through the Rayleigh and Hartmann number and defined as      

Ra =
gβΔTD3ρ2 Cp

να
,          Ha = DB0√

σ

ρν
(11) 

Where D=ro-ri is characteristic length for Ra and Ha. For the present natural-MHD convection flow results 

validated by comparison the heat transfer rate that may be generally expressed as local and averaged Nusselt 

numbers on the hot wall in the form of 

Nu =
D

TH − TC

∂T

∂r
|r = ri,          Nu̅̅ ̅̅ =

1

2π
∫ ∫ Nu∂θ ∂z

H

0

2π

0

 

(12) 

2.2 Numerical procedure 

Using the control volume approach the described equations discretized with non-uniform grid size on a 

staggered arrangement for the velocities. Pressure-velocity coupling is handled by the SIMPLE scheme. The 

convective terms are discretized by using the second order upwind differencing, and a second-order central 

difference scheme is preferred for the buoyancy and diffusion terms for numerical stability. The QUICK 

scheme employed in solution of energy equation. To solve the algebraic equations and related initial and 

boundary conditions we employed Guass-sieddel method. To find the accuracy and performance of the 

present numerical model, results are compared with the available numerical models. To ensure of present 

model performance, the results were validated with applying the external magnetic field. For this purpose, a 

constant external magnetic field was applied in x-direction. Figure 2 shows the predicted results of present 

model and those available in literature (Afrand et al., 2017) and (Shankar et al., 2008). It can be seen from this 

table that agreement between the 3D results is very good. It is noted that grid independence study has been 

done by a careful verification for different cases.  

Figure 1: The physical model and the boundaries   Figure 2: Calculated Nusselt numbers for validation test 

3. Results and discussion

Because of expensive calculations of 3D models, most but not all of the works carried out in 2D axisymmetric 

models. However, when the simulated model is a vertical annulus and the applied magnetic field is in 

horizontal direction this assumption cannot be applied. In present numerical study the simulations are 

performed using gallium as molten metal that filled the 3D annulus with the thermo-physical properties that 

listed in Table 1. The Rayleigh number is varied from 104 to 106 and three magnetic field strengths of 0.01T, 

0.05T, 0.075T are considered in calculations. Hartman number also is dependent upon the studied case and 

the Prandtl number is 0.0244. Three test cases with different radii ratio and heights are examined in 

simulations. Dimensions for the test cases are presented in Table 2. In all cases, the initial temperature of the 

gallium Tint is equal to 309 C. Also, in all simulations considered that temperatures of hotter TH and colder TC 

walls to be 309 K and 303 K, respectively. For convenience, λ=ro/ri and A=H/(ro-ri) are introduced as cavity 

aspect ratios. The temperature distributions and flow structures are represented for different Rayleigh 

numbers. 
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Table 1: Properties of the gallium (Charmchi et al., 2007) 

Material Property    Value 

Density    6094.7   Kg/(m3) 

Heat capacity 

Thermal diffusivity 

Viscosity 

Electrical Conductivity 

Thermal exp. coefficient 

Prandtl number 

    397.6 

1.29×10-5  

 1.92×10-3,846,154.1 

1.29×10-4      

0.054 

 J/(kgoC) 

m2/s 

kg/(m.s) 

1/(Ω.m) 

1/K 

- 

Table 2: Dimensions of the annuluses considered 

 Case 1 Case 2   Case 3 

ri, ro 0.025,   0.1 m 

H     0.025 m 

A=H/(ro-ri)     1/3  

λ=ro/ri    4.0 

0.025, 0.075 m 

0.05 m 

1.0 

3.0 

0.025, 0.05 m 

0.1 m 

4.0 

2.0 

Case 1                                                    Case 2       Case3 

Figure 3: The isothermal contours in absence of magnetic field for Ha=0 

Case 1

Case 2

Case 3

 (a) B=0.01T  (b) B=0.05 T   (c) B=0.075 T 

Figure 4: Comparison of the 3D isothermal contours for three cases in constant Rayleigh of 510Ra  

Figure 3 represents the results in a typical vertical cross section in three cases for Ra=105 and limiting case of 

pure thermal convection. Comparison of contours clears that convection structures in annuluses with high 
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aspect ratio grow increasingly. Consequently, compared to short annuluses stronger magnetic fields are 

needed in suppressing the flows.  

When magnetic field exists, the numerical computations are carried out to evaluate the effect of Lorentz force 

on the flow pattern and temperature distribution in liquid gallium. As noted previously, in present model the 

induced electrical field is negligible so the Lorentz force is generated only by the term of V×B0. Moreover, it 

can be found from Eq (10) that with an applied magnetic field along the y direction the resulting Lorentz force 

depends on direction of vertical plane. This force has a maximum value in z-y section thus is minimum at the 

z-x section. However, the convection structures of liquid gallium for different cross sections are represented 

for all test cases in Figure 4 for Ra=105. Figure 4 shows the 3D temperature fields for different Hartman 

numbers. These results illustrate clearly that in a constant Rayleigh number with increasing the magnitude of 

applied magnetic field the convection structures are damped greatly. As an interesting result it can be realized 

that with increasing the aspect ratio of annulus the stronger convection flows appear and obviously this 

suggests that suppressing the thermal stratifications in tall annuluses needs stronger applied magnetic field. 

This is due to intensity of convection flows. 

          (a) Ra=104                  (b) Ra=105            (c) Ra=106 

Figure 5: Effect of Ra number on isotherms in x-z and y-z sections for B=0.075 T 

(a) (b)                                     (c) 

Figure 6: Effect of magnetic field on vertical velocity profile in case 2 (a) Ra=104, (b) Ra=105, (c) Ra=106 

To obtain the effect of Ra number the temperature isotherms are shown for case 2 for constant aspect ratio. 

This is accomplished by representing the results in x-z and y-z sections where minimum and maximum 

magnetic forces exist. Temperature profiles for Ra=104, 105 and 106 are shown in Figure 5. As Figure 5 shows 
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for Ra=106 with applied magnetic field strength of B=0.075T thermal stratification still can be observed. The 

temperature distribution suggests the using of stronger magnetic field. 

To further investigation of magnetic field influence on flow field, the vertical velocity profiles for case 2 are 

shown in Figure 6. The profiles indicate vertical component of velocity vector at the mid height of annulus in x-

z and y-z sections. As can be seen effect of different magnetic field strengths were tested. Results indicate 

that with increasing in Rayleigh number vertical velocity increased considerably whereas with increasing the 

Hartman number (magnetic field) convection flow suppressed effectively. It is worthy to note that vertical 

velocity profiles in x-z and y-z sections have different magnitudes except for the case of B=0. 

4. Conclusions

Understanding has been enhanced of the 3D thermo-magnetic convection within an electrically conducting 

fluid (gallium) filled an annulus in presence of a horizontal constant magnetic field. Three cases including tall, 

square and shallow shape annuluses are selected to study. Distribution of the temperature field and velocity 

vectors are given for different Rayleigh and Hartman numbers and results are compared to the case of no 

external magnetic field. The effect of annulus aspect ratio is also studied. The results of the simulation are as 

follows: 

The natural convection inside the annulus greatly depends on Rayleigh number, magnetic field strength and 

annulus aspect ratio. 

The results show that stronger magnetic field is needed to suppress convection flow in tall annuluses 

compared to the shallow ones, especially in high Rayleigh numbers. 

The results indicate that when magnetic field applies, in shallow annuluses the azimuthal dependence of 

computed velocity and temperature fields are eminent compared to square and tall annuluses.  

Present numerical results can be used as a comparative study on the validity and reliability of negligible 

induced electric fields assumption used in 3D MHD simulations. 

Present numerical study provides a good prediction for thermo-magnetic convection in 3D annulus with 

negligible induced electric fields. These results are expected to be useful for enhancing the design of existing 

MHD solidification systems and to achieve high quality products. 
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