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The objective of this study is to predict the heat transfer characteristics of nanofluids in heat pipes based on 
artificial neural network (ANN) theory. A visualized experiment for analyzing the heat transfer performance of 
heat pipes with nanofluid was constructed, and the effects of heating capacity, inclination angle, pipe 
diameter, nanofluid concentration and particle suspendability on the heat transfer characteristic of heat pipe 
were analysed. The heat transfer characteristics of nanofluids in heat pipes were contrasted with that of the 
heat pipe containing the base fluid only. This ANN model had been proven to be desirable in accuracy for 
predicting the heat transfer characteristics of heat pipe using nanofluid by comparing ANN model results with 
experimental results at the same operating conditions. This work provides an accurate modeling approach 
based on ANN for the research of heat transfer characteristics of nanofluids in heat pipes and solving phase 
change heat transfer problems related with complicated condition. 

1. Introduction 

A nanofluid is a fluid containing nanometre-sized particles. To prepare such a fluid, nanoparticles are added to 
a conventional heat exchange medium and subjected to some necessary treatments (Saleh et al., 2013). 
Compared with conventional heat transfer media and suspensions, nanofluids could significantly reduce the 
heat resistance and improve the heat transfer efficiency, due to high specific heat and strong heat exchange 
capacity (Yousefi et al., 2013). The extremely small size of nanoparticles helps to maintain the stability and 
uniformity of nanofluids, which reduces the wear on heat pipe walls and suppresses the chance of pipe 
blockage. Nanofluids have novel properties that make them potentially useful in many applications in heat 
transfer. It could be directly applied to heat pipe in precision equipment (Ghanbarpour et al., 2015). 
Artificial neural network (ANN) is computing systems vaguely inspired the biological neural networks that 
constitute animal brains. It is a typical framework analysis technology for many different machine learning 
algorithms to work together and process complex data inputs. ANN provides a desirable solution to problems 
with multiple influencing factors. Before the analysis, the ANN needs to be trained with a large amount of data, 
so that the network establishes a stable mapping relationship between the input data and the output data. The 
ANN-based prediction has become increasingly popular with the continuous development of computer and 
programming technologies. Currently, much attention is paid to the application of the ANN in engineering, 
such as the ANN-based heat exchange model for heat pipe. The ANN-based prediction model can quantify 
the heat exchange rate and heating power of the heat pipe (Kavusi and Toghraie, 2017) 
In this work, a visualized experiment for analyzing the heat transfer performance of heat pipes with nanofluid 
was constructed, and this ANN model was established to predict the heat transfer characteristics of heat pipe 
using nanofluid at the same operating conditions (Uddin and Hoque, 2018). 

2. Experiment 

A visualized experiment for analyzing the heat transfer performance of heat pipes with nanofluid was 
constructed. And the effects of inclination angle and inner diameter of the heat pipe, the mix proportion of the 
nanofluid, and the type of the nanofluid on the heat transfer performance of heat pipes were analysed. The 
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heat pipes were all made of glass in this experiment. The inner diameters of these pipes were ∅3×0.85 mm 
and ∅2×0.85 mm. All the other dimensions of the pipes are the same. As shown in Figure 1, the experimental 
device consists of two elbows and four straight heat pipes. The total length of all heat pipes is 265 mm, and 
the spacing between different heat pipes is 20 mm. 

 

Figure 1: Experimental device 

The tested nanofluids were prepared from two types nanoparticles: TiO2 particles (10nm) and CuO particles 
(40nm). The TiO2 particles were mixed with distilled water into solutions with volume concentrations C of 
0.5%, 0.25% and 0.1%, respectively, while the CuO particles were also mixed with distilled water into 
solutions with volume concentration of 1%. Table 1 lists the inner diameters of the heat pipes and the working 
media of the experiment. 

Table 1: Main parameters of the experiment 

Inner diameter Working medium 
Φ3×0.85mm Distilled water 
Φ3×0.85mm 1%_10nm_TiO2/H2O nanofluid 
Φ3×0.85mm 0.5%_10nm_TiO2/H2O nanofluid 
Φ3×0.85mm 0.25%_10nm_TiO2/H2O nanofluid 
Φ3×0.85mm 0.1%_10nm_TiO2/H2O nanofluid 
Φ3×0.85mm 1%_40nm_CuO/H2O nanofluid 
Φ2×0.85mm Distilled water 
Φ2×0.85mm 1%_10nm_TiO2/H2O nanofluid 
 
The previous studies have shown that the filling rate of nanofluid in heat pipes directly bears on the heat 
exchange performance of the pipe. The filling rate of nanofluid is positively correlated with the heat exchange 
efficiency of the heat pipe. Through contrastive experiments, it is learned that the heat exchange efficiency 
was relatively high when the filling rate stood at 55%, 60% and 68%, respectively. Hence, the filling rate is set 
to 55% in our research. 
For the heat pipes with distilled water as the base solution, the heat resistance R minimized at 0.12 K/W under 
the inclination angle β=90° and working temperature T=130°C. The experiment reveals that the heat 
resistance R of the heat pipe with the solution medium of TiO2/H2O reached the minimum of 0.11 K/W under 
the water temperature T=110°C. The thermal conductivity Keff of the heat pipes surpassed 5×103 W/(m·K), 
more than 10 times that of copper material. This means the glass heat pipes satisfy the heat exchange 
requirements. 
In this work, the nanofluids were prepared by adding nanoparticles into the base solution of distilled water, and 
the effects of nanofluid concentration and particle suspendability on the heat exchange efficiency of the heat 
pipe were discussed. 
(1) Before reaching the limit value, the heating efficiency of the fluid in the heat pipe is negatively correlated 
with the temperature in the heat pipe. With the decrease of heat resistance, the fluid medium temperature in 
the heat pipe fluctuated less violently and in shorter cycles. 
(2) The inclination angle β had an extremely limited impact on the heat exchange coefficient of the heat pipe 
when it fell between 30° and 90°. When this angle approached zero, the fluid medium flowed slowly in the 
heat pipe, varied degrees of increase was observed for the working temperature, inside-outside temperature 
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difference and heat transfer resistance of the heat pipe, and the heat transfer efficiency of the fluid in the pipe 
plunged deeply. 
(3) On the impact of the inner diameter, the inner diameter of the heat pipe is positively correlated with the 
working temperature in the pipe, when the nanofluid density remained the same; meanwhile, the inner 
diameter is negatively correlated with the fluctuation of the fluid medium temperature in the heat pipe. 
(4) Compared with the heat pipe filled with distilled water, the heat pipes filled with nanofluids carry the 
following basic features: 
(a) After standing for a while, the heat pipe filled with nanofluids suffered from different degrees of particle 
precipitation. The precipitated nanoparticles were restored to the suspended state through oscillation, creating 
bubbles of different diameters. As a result, the fluid medium can flow rapidly at a high heat transfer power after 
the heat pipe starts working. However, numerous disordered bubbles may appear inside the pipes if the flow 
rate is too fast. 
(b) The heat pipes filled with nanofluids can work at a low heat transfer power. Compared with the heat pipe 
filled with distilled water, the heat pipes filled with nanofluids had a short start-up time, low heat transfer 
resistance, as well as slight and short-cycle temperature fluctuations. 
(c) With the growing concentration of the nanofluid medium, the heat transfer efficiencies of the heat pipes 
increased by different degrees. However, when the concentration reached a certain value, the heat transfer 
efficiencies began to decrease. The optimal concentration is correlated with the inner diameter of the heat 
pipe. Under the same temperature conditions, the thermal resistances of the heat pipes filled with nanofluids 
were reduced by more than 40%. 

3. ANN model  

3.1 Model construction 

 

Figure 2: ANN structure 

The ANN generally consists of a data input layer, an intermediate processing layer and a data output layer, as 
shown in Figure 2. Before formal application, the ANN should be trained repeatedly with paired input and 
output data, such that the network could learn the law of function mapping. Based on this law, the ANN could 
predict the output corresponding to new input data. Suitable for the analysis and reasoning of nonlinear 
problems, the ANN has been widely adopted for recognition and prediction of complex data with multiple 
influencing factors. 
A total of 300 sets of experimental data were obtained from the above experiment. These data are about 
parameters like inclination angle of the heat pipe, the inner diameter of the heat pipe, the nanofluid 
concentration, and the heating power. 
There are four possible values of the inclination angle (β=0°, 30°, 60° and 90°) and two possible inner 
diameters of the heat pipes (d= 4.3 mm and 2.8 mm). The nanofluid concentration varied between 0% and 
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1%, while the heating power ranged from 5 W to 120 W. 
The above parameters had markedly different impacts on the heat transfer resistance. Among them, the 
inclination angle β exerted a greater influence over the heat transfer resistance of the heat pipe than the other 
parameters. The heat pipe achieved the best heat value at the inclination angle of 90°. Considering the 
experimental conditions, there were only two internal diameters for the heat pipes. The data amount was too 
small to perform nonlinear fitting and regression analysis.  
After the nanoparticles were added to the solution, the heat value in the pipe decreased under a low heating 
power, but the solution became more viscous, pushing up the resistance of the fluid flow. Thus, the heat 
transfer ability of the pipe declined when a large volume of nanoparticles were added to the solution. For a 
heat pipe filled with nanofluid, the dosage of nanoparticles should be kept within a certain range to maintain a 
good heat transfer ability, when the inner diameter is fixed. 
In this paper, the nanofluid concentration and heating power, as the optimal parameters of the heat pipe, are 
adopted as the input data of the ANN-based model, while the heat resistance, an indicator of the heat transfer 
ability of the pipe, is taken as the output. The ANN-based model was adopted to fit 60 sets of experimental 
data. The resulting continuous data were consistent with the experimental results. These data provide 
sufficient samples for the training of the model, which improves the accuracy and predication quality of the 
model. 

In 63 out of the 300 sets of experimental data, the inclination angle β was 90° and d=4.3mm. The data were 
subjected to nonlinear fitting by the logistic function below: 
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where A1 is the initial data; A2 is the actual value; x0 is the intermediate value of the model; the exponent p=3. 
The residual was controlled within 0.01. The fitting results are illustrated in Figure 3. 
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Figure 3: Fitting results                                             Figure 4: Convergence errors of different structural models 

At present, there is still a lack of theoretical basis for ANN-based prediction models. In practice, several data 
training models should be designed to enhance the prediction accuracy. The trained models should be 
selected considering the errors and network complexities observed in the training process. The most popular 
selection equations for network structure are as follows: 
Kolmogorov equation: 

12 += ih JN
                                                                                                                                                     (2) 

Rogers-Jenkins equations: 
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where Ji is the number of input parameters; Jo is the number of output parameters; Nh is the number of 
neurons in the hidden layer; Nt is the amount of data for model training. 
According to the above equations, it is learned that the hidden layer contains at least 4 neurons, and the value 
of Nh is about 25. Therefore, 12 different neural network structures are selected (Table 5.1). 
Since the number of data inputs and that of data outputs of the model both surpassed zero, the logsig function 
was selected as the transfer function for neurons in the input and hidden layers, and the purelin function was 
adopted as the transfer function for neurons in the hidden and output layers. The error back-transfer algorithm 
was employed for model training. 
It is observed that the model error gradually decreased through repeated trainings. The error convergence 
was greatly affected by the number of hidden layer neurons Nh. Figure 4 compares the convergence errors of 
different structural models after 50,000 trainings. It can be seen that the mean variance was 1.0475×10-4 after 
the trainings. 

3.2 Accuracy verification  
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Figure 5: Comparison between the predicted data of the proposed model and those of an untrained model 

Through the trainings, the 2-60-5-1 structure was selected for our ANN-based prediction model. With this 
structure, the averaged squared deviation δ converged at 9.998×10-5, lower than the target value of 1×10-4. 
To verify the accuracy of our model, the prediction results of the model were contrasted with those of an 
untrained model. As shown in Figure 5, the 2-60-5-1 types model, i.e. the proposed ANN-based prediction 
model, had a maximum relative error of 18% in the 64 sets of verification data, realized a greater-than-10% 
error in more than 3 sets of data, and achieved a less-than-10% error in over 90% of the datasets. The results 
fully demonstrate the high accuracy of the ANN-based model in the prediction of heat resistance of the heat 
pipe, indicating that the model is suitable for the optimization of heat pipes filled with nanofluids. 

3.3 Prediction results 

Considering the major impacts of fluid concentration on heat exchange performance, the trained ANN-based 
model was applied to analyse the fluid added with nanoparticles. As shown in Figure 6, the addition of 
nanoparticles to the solution led to a rapid decline in the heat resistance of the heat pipe. When the volume 
fraction of the nanofluid surpassed 0.1%, the heat resistance of the heat pipe was at a high level. Further 
increase of the volume fraction brought corresponding growth in the heat resistance. After the volume fraction 
exceeded 0.5%, the heat resistance started to decline, but rose again after reaching 0.1%. These trends 
agree well with the experimental results. 
In general, the fluid in the heat pipe flowed from the heating section to the cooling section. This trend was 
mainly driven by the temperature difference. Thus, the heat exchange in the heat pipe is mainly influenced by 
the fluid velocity and the heat exchange coefficient. When the heat exchange coefficient remains the same, 
faster fluid flow in the heat pipe can suppress the heat variation, lower the temperature difference between 
pipe ends and reduce the heat resistance. 
The fluid velocity in the heat pipe is mainly affected by the fluid viscosity. With the growth in fluid viscosity, the 
six functional resistance values increase correspondingly. Under the same pressure difference, the fluid 
velocity is negatively correlated with the thermal resistance e in the heat pipe. Unlike traditional mixed fluids, 
nanofluids exhibited significant nonlinearities in concentration variation. 
The nanofluid can significantly increase the heat exchange coefficient of the fluid in the pipe. More bubbles 
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may appear due to the nanoparticles in nanofluid. Besides improving the evaporation and condensation 
conditions in the pipe, much attention should be paid to enhance the turbulence features of the fluid 
considering the mutual collision effect between nanoparticles. In our experiment, the heat exchange coefficient 
of the heat pipes filled with 0.5%, 1% and 2.5% TiO2 nanofluids increased by 5.6%, 13.2% and 13.5%, 
respectively, when the Reynolds number of the nano-media was Re=1700. 
The relationship between heat resistance and nanofluid concentration in Figure 6 demonstrates that the 
addition of nanoparticles to the heat pipe changed the fluid state and collision against the wall of the heat pipe, 
creating more bubbles in the pipe. These bubbles can accelerate the fluid velocity, significantly reducing the 
thermal resistance in the heat pipe. 
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Figure 6: Relationship between heat resistance and nanofluid concentration 

4. Conclusions 

This paper discusses the effects of heating power, inclination angle and inner diameter of the heat pipe on the 
heat transfer performance of nanofluid in the heat pipes. The addition of nanoparticles could significantly 
improve the heat transfer performance of nanofluid, and the volume fraction of nanoparticles is positively 
correlated with the heat resistance of the heat pipe system.   
A prediction model of heat transfer in heat pipes based on ANN model was constructed, and was applied to 
examine the interferences of nanofluid concentration and heating power in heat transfer performance in the 
heat pipe. The ANN model had been proven to be desirable in accuracy for predicting the heat transfer 
characteristics of heat pipe using nanofluid by comparing ANN model results with experimental results at the 
same operating conditions.  
This work provides an accurate modeling approach based on ANN for the research of heat transfer 
characteristics of nanofluids in heat pipes and solving phase change heat transfer problems related with 
complicated condition. 
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