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The purpose of the present investigation is to examine the impact of Hall current, joule heating and mass 

transfer on MHD peristaltic hemodynamic Jeffery fluid with the porous medium under an influence of chemical 

reaction through an inclined tapered vertical channel. Thermal radiation is also taken into the account. An 

analytical solution is carried out under a small Reynolds number and large wavelength approximations. 

Numerical results were presented for axial velocity, pressure rise, frictional force, temperature and 

concentration. Variations of the said quantities with dissimilar parameters are computed by using 

MATHEMATICA software. It is worth mentioning that the pumping rate enhances in free pumping (∆p =0) and 

augmented (∆p <0, �̅�>0) zones whereas the trend is reserve in retrograde pumping region (∆p >0, �̅�>0) and 

peristaltic pumping region (∆p >0,�̅�>0) with an increase in hall current parameter .We notice that the frictional 

force exactly has an opposite behaviour when compared to the pressure rise. It is clear that the temperature of 

the fluid reduces by an increase in thermal radiation parameter. We notice that the concentration distribution 

reduces by increase in chemical reaction parameter. 

1. Introduction

To the satisfactory of our expertise, no research has been made yet to hall current, joule heating and mass 

transfer on MHD peristaltic hemodynamic Jeffery fluid with the porous medium under an influence of thermal 

radiation through an inclined tapered vertical channel. Interest in peristaltic go with the flow has been aroused 

by its relevance to biological approaches, and its potential for industrial and medical applications. The 

behaviour of most of the physiological fluids, oil, hydrocarbons and polymer are known to be non-Newtonian. 

One of the major chemical mechanisms for fluid transport in many biological systems is well known to 

physiologists to be peristalsis. Peristalsis is an important mechanism for mixing and transporting fluids, which 

is generated by a progressive wave of contraction or expansion moving along a tube. This travelling wave 

phenomenon is referred to as peristalsis. Peristalsis has its immense applications in medical physiology as 

well as in industry. In medical physiology, it is involved in the motion of food material in the GIT. (Latham 

1966) was probably the first to study the mechanism of peristaltic pumping in his M. S. Thesis.  Later on, this 

mechanism has become an important topic of research owing to the above-mentioned applications in 

biomechanical engineering and biomedical technology. Peristaltic transports of fluids in tubes for better and 

clear understanding of peristaltic mechanism have studied by (Barton a et al., 1968; Yin et al., 1969; Chow 

1970; Colgan et al., 1987; Weinberg et al., 1971; Misra et al., 2002).  

The energy transfer by heat flow cannot be measured directly. But the concept has a physical meaning 

because it is related to the measurable quantity called temperature. In another paper, (Vajravelu et al., 2014) 

investigated the peristaltic transport of a conducting Jeffrey fluid in an inclined asymmetric channel. Influence 

of heat transfer on magnetohydrodynamic peristaltic blood flow with porous medium through a coaxial vertical 

asymmetric tapered channel - an analysis of blood flow study by (Abzal et al., 2016). Ravikumar and Ameer 
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Ahmad (2016) examine the peristaltic hemodynamic Jeffery fluid through a tapered channel with heat and 

mass transfer under the Influence of radiation - Blood flow model. The mathematical model on peristaltic flow 

in a non-uniform channel with heat and mass transfer discussed by (Noreen 2017). Furthermore, (Selvi et al., 

2017) discussed the effect of heat transfer on peristaltic flow of Jeffrey fluid in an inclined porous stratum. 

Peristaltic transportation with the porous medium through vertical tapered channel discussed by (Ravikumar et 

al., 2015, 2016, 2017 and 2018). (Rajakumar et al., 2018) discussed by radiation, dissipation and dufour 

effects on MHD free convection casson fluid flow through a vertical oscillatory porous plate with ion-slip 

current. Hall and convective boundary conditions effects on peristaltic flow of a couple stress fluid with porous 

medium through a tapered channel under Influence of chemical reaction examined by (Ravikumar et al., 

2018). 

2. Formulation of the problem 

Let us consider the MHD peristaltic hemodynamic transport of an incompressible viscous fluid in a two-

dimensional uneven inclined vertical tapered channel under the influence of the porous medium. The gravity 

field, thermal radiation, chemical reaction and joule heating are taken into the account. The left wall of the 

channel is maintained at temperature T0, whereas the right wall has temperature T1. We tend to assume that 

the fluid is subject to a relentless transverse magnetic field B0. The fluid is induced by sinusoidal wave trains 

propagating with constant speed c along the channel walls. 

The geometry of the wall deformations is drawn by the subsequent expressions 

𝑌 =  𝐻2
̅̅̅̅ = 𝑏 + 𝑚𝐼�̅� + 𝑑 sin [

2𝜋

𝜆
(�̅� − 𝑐 𝑡̅)]                                                                                                            (1) 

𝑌 =  𝐻1
̅̅̅̅ = −𝑏 − 𝑚𝐼�̅� − 𝑑 sin [

2𝜋

𝜆
(�̅� − 𝑐 𝑡̅) + 𝜙]                                                                                                   (2) 

In the above equations, d is the wave amplitude of the peristaltic wave, 𝑐 is the wave velocity, b is the mean 

half-width of the channel,  𝑚𝐼  is dimensional the non-uniform parameter, 𝜆 is the wavelength, t is the time, X 

is the direction of wave propagation and 𝜙 is the phase variance. 

 

The constitutive equations for an incompressible Jeffrey fluid are  

�̅� = −�̅� 𝐼 ̅ + 𝑆̅                                                                                                                                                       (3) 

𝑆̅ =  
𝜇

1+𝜆1(�̇�̅+𝜆2 �̈�̅)
                                                                                                                                                   (4) 

where �̅� and 𝑆̅ are Cauchy stress tensor and further stress tensor, respectively, �̅� is that the pressure, 𝐼 ̅is the 

identity tensor, 𝜆1 is the quantitative relation of relaxation to retardation times, 𝜆2 is the retardation time �̈� is the 

shear rate and dots over the quantities indicate differentiation with relevance time. 

In laboratory frame, the equations governing the flow of an incompressible hydromagnetic hemodynamic 

peristaltic transportation through a porous medium in the vertical uneven tapered channel in cartesian form for 

the present problem are given by 

𝜕𝑈

𝜕�̅�
+

𝜕𝑉

𝜕�̅�
 = 0                                                                                                                                                        (5) 

𝜌 (�̅� 
𝜕𝑈

𝜕�̅�
+ �̅�

𝜕𝑈

𝜕�̅�
)  =  −

𝜕𝑝

𝜕𝑥
+

𝜕𝑆�̅�𝑋̅̅ ̅̅ ̅

𝜕�̅�
+

𝜕𝑆�̅�𝑌̅̅ ̅̅̅

𝜕�̅�
+ [

𝜎 𝐵0
2

1+𝑚2] (𝑚�̅� − (𝑈 + 𝑐)) −
𝜇

𝑘1

(�̅� + 𝑐) + 𝜌𝑔 sin 𝛼                                     (6) 

𝜌 (�̅� 
𝜕𝑉

𝜕�̅�
+ �̅�

𝜕𝑉

𝜕�̅�
)  =  −

𝜕𝑝

𝜕𝑦
+

𝜕𝑆�̅�𝑌̅̅ ̅̅̅

𝜕�̅�
+

𝜕𝑆�̅�𝑌̅̅ ̅̅

𝜕�̅�
− [

𝜎 𝐵0
2

1+𝑚2] (�̅� + 𝑚(�̅� + 𝑐)) −
𝜇

𝑘1

(�̅� + 𝑐) − 𝜌𝑔 cos 𝛼                                     (7) 

The energy equation is 

𝜌 𝐶𝑝 (�̅�  
𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
) �̅�  = 𝑘 (

𝜕2

𝜕�̅�2 +
𝜕2

𝜕�̅�2) �̅� + 𝑄0 + 𝜎 𝐵0
2�̅�2 −

𝜕𝑞𝑟

𝜕�̅�
                                                                            (8) 

The concentration equation is 

(�̅�  
𝜕𝐶

𝜕�̅�
+ �̅�

𝜕𝐶

𝜕�̅�
)  = 𝐷𝑚 (

𝜕2𝐶

𝜕�̅�2 +
𝜕2𝐶

𝜕�̅�2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2�̅�

𝜕�̅�2 +
𝜕2�̅�

𝜕�̅�2) − 𝑘2(𝐶 − 𝐶0)                                                                      (9) 

Where �̅� and �̅� are the velocity components in the laboratory frame (�̅�, �̅�), k1 is that the permeability of the 

porous medium, 𝜌 is the density of the fluid, p is the fluid pressure, k is the thermal conduction, 𝜇 is the 

coefficient of the viscosity, Q0 is the constant heat addition/absorption, Cp is the specific heat at constant 

pressure, σ is the electrical conductivity, g is the acceleration attributable to  gravity, m is the hall parameter, �̅�  
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is the temperature of the fluid, 𝐶̅ is the concentration of the fluid, Dm is the coefficient of mass diffusivity, Tm is 

the mean temperature, KT is the thermal diffusion ratio  and 𝑞𝑟 is the radioactive heat flux. 

We introduce the following non-dimensional variables and parameters for the flow: 

𝑥 =  
�̅�

𝜆
, 𝑦 =  

�̅�

𝑏
, 𝑡̅ =  

𝑐 𝑡

𝜆
 ,𝑢 =  

𝑢

𝑐
, 휀 =  

𝑑

𝑏
, 𝛿 =  

𝑏

𝜆
, 𝑣 =  

�̅�

𝑐𝛿
, 𝑆 =  

𝑏𝑆̅ 

𝜇 𝑐
, ℎ1 =  

𝐻1̅̅ ̅̅

𝑏
, ℎ2 =  

𝐻2̅̅ ̅̅

𝑏
, 𝑝 =  

𝑏2�̅�

𝑐 𝜆 𝜇
, 𝑀 =  𝐵0𝑏√

𝜎

𝜇
,           

𝑅𝑒 =  
𝜌 𝑐 𝑏

𝜇
, 𝜂 =

𝜌 𝑏2𝑔

𝜇𝑐
 𝜂1 =

𝜌 𝑏3𝑔

𝜆𝜇𝑐
, 𝜃 =  

�̅�−𝑇0

𝑇1−𝑇0
, Φ =

𝐶−𝐶0

𝐶1−𝐶0
, 𝑃𝑟 =  

𝜇 𝐶𝑝

𝑘
,   𝐸𝑐 =  

𝑐2

𝐶𝑝(𝑇1−𝑇0)
 𝑅𝑛 =

16 𝜎∗ 𝑇0
3𝑏2

3𝑘∗𝜇 𝐶𝑝
, 𝛽 =

𝑄0𝑏2

𝜇 𝐶𝑝(𝑇1−𝑇0)
, 

 𝑆𝑐 =
𝜇

𝐷𝑚𝜌
, 𝑆𝑟 =  

𝐷𝑚𝜌 𝑘𝑇(𝑇1−𝑇0)

𝜇𝑇𝑚(𝐶1−𝐶0)
 , 𝑆 =

𝐾2𝜌 𝑑2

𝜇
                                                                                                            (10) 

where 휀 is the non-dimensional amplitude of channel, 𝛿 is the wave number, k1 is the non - uniform parameter, 

Re is the reynolds number, M is the hartmann number, η andη1 are gravitational parameters, Pr  is the prandtl 

number, Ec is the eckert number, Rn is the thermal radiation parameter, β is the heat source/sink parameter, 

Br is the brinkman number, 𝑆 is the chemical reaction parameter, Sc schmidt number and Sr soret number. 

3. Solution of the problem 

By using the equation (10), the system of equations (5 -9) can be written in dimensionless form after dropping 

the bars   

𝛿 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 0                                                                                                                                            (11) 

𝑅𝑒 𝛿 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+ 𝛿 

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
+

𝑀2

1+𝑚2 (𝑚𝛿𝑣 − (𝑢 + 1)) −
1

𝐷
𝑢 −

1

𝐷
+ 𝜂 sin 𝛼                                     (12) 

𝑅𝑒 𝛿3  (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑦
+ 𝛿2  

𝜕𝑆𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑆𝑦𝑦

𝜕𝑦
−

𝛿𝑀2

1+𝑚2
(𝑚(𝑢 + 1) + 𝛿𝑣) − 𝛿2 1

𝐷
𝑣 − 𝛿2 1

𝐷
− 𝜂1 cos 𝛼                     (13) 

𝑅𝑒 [𝛿𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
] =  

1

𝑃𝑟
[𝛿2 𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
] + 𝛽 + 𝑀2𝐸𝑐𝑢2 + 𝑅𝑛

𝜕2𝜃

𝜕𝑦2
                                                                             (14) 

𝑅𝑒𝛿 [𝑢
𝜕Φ

𝜕𝑥
+ 𝑣

𝜕Φ

𝜕𝑦
] =  

1

𝑆𝑐
[𝛿2 𝜕2Φ

𝜕𝑥2 +
𝜕2Φ

𝜕𝑦2 ] + 𝑆𝑟 [𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2] − 𝑆Φ                                                                          (15) 

Equations (11-15) under the assumptions of long wavelength and low-Reynolds number approximation take 

the form 

𝜕2𝑢

𝜕𝑦2 − (
𝑀2

1+𝑚2
+

1

𝐷𝑎
) (1 + 𝜆1)𝑢 =  (1 + 𝜆1)

𝜕𝑝

𝜕𝑥
+ (

𝑀2

1+𝑚2
+

1

𝐷𝑎
) (1 + 𝜆1) − 𝜂 sin 𝛼  (1 + 𝜆1)                                       (16) 

𝜕𝑝

𝜕𝑦
+ 𝜂1 cos 𝛼 = 0                                                                                                                                               (17) 

(1 + 𝑅𝑛𝑃𝑟)
𝜕2𝜃

𝜕𝑦2
=  −𝛽𝑃𝑟 − 𝑀2𝐵𝑟𝑢2                                                                                                                     (18) 

1

𝑆𝑐

𝜕2Φ

𝜕𝑦2 + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2 − 𝑆𝜙 = 0                                                                                                                                    (19) 

The relative boundary conditions in dimensionless form are given by 

u = -1, θ = 0, Φ = 0 at   𝑦 =  ℎ1 = −1 − 𝑘1𝑥 − 𝜖 sin[2𝜋 (𝑥 − 𝑡) + 𝜙]                                                                (20) 

u = -1, θ = 1, Φ =1 at    𝑦 =  ℎ1 = 1 + 𝑘1𝑥 + 𝜖 sin[2𝜋 (𝑥 − 𝑡)]                                                                          (21) 

The solutions of velocity and temperature with subject to boundary conditions (20) and (21) are given by 

 𝑢 =  𝐺 sinh[𝛼1𝑦] + 𝐹 cosh[𝛼1𝑦] + 𝐻                                                                                                                 (22) 

𝜃 =  𝐸1 + 𝐸2𝑦 − 𝑎11𝑦2 − 𝑎12(𝑒2𝛼1𝑦) − 𝑎13(𝑒−2𝛼1𝑦) − 𝑎14(𝑒𝛼1𝑦) − 𝑎15(𝑒−𝛼1𝑦)                                                   (23) 

Φ =  𝐸3 sinh[𝑓𝑦] + 𝐸4 cosh[𝑓𝑦] + 𝑎21 + 𝑎22(𝑒2𝛼1𝑦) + 𝑎23(𝑒−2𝛼1𝑦) + 𝑎24(𝑒𝛼1𝑦) + 𝑎25(𝑒−𝛼1𝑦)                            (24) 

3.1 Volumetric flow rate 

The volumetric flow rate in the wave frame is defined by 

𝑞 = ∫ 𝑢
ℎ2

ℎ1
𝑑𝑦=𝐻(𝑏1𝑏2𝑏3 + 𝑏1𝑏4 + (ℎ1 − ℎ2)) + (𝑏1𝑏2𝑏3 + 𝑏1𝑏4)                                                                         (25) 

The pressure gradient obtained from equation (25) can be expressed as   
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𝑑𝑝

𝑑𝑥
= 𝜂 sin 𝛼 − (

𝑞−(𝑏1𝑏2𝑏3+𝑏1𝑏4)

(𝑏1𝑏2𝑏3+𝑏1𝑏4+(ℎ1−ℎ2))
) (

𝑀2

1+𝑚2 +
1

𝐷𝑎
) − (

𝑀2

1+𝑚2 +
1

𝐷𝑎
)                                                                       (26) 

The instantaneous flux Q (x, t) in the laboratory frame is 

𝑄 = ∫ (𝑢 + 1)
ℎ1

ℎ2
𝑑𝑦 = 𝑞 − ℎ                                                                                                                              (27) 

The average volume flow rate over one wave period (T = λ/c) of the peristaltic wave is defined as  

�̅� =
1

𝑇
∫ 𝑄

𝑇

0
𝑑𝑡 = 𝑞 + 1 + 𝑑                                                                                                                               (28) 

From the equations (26) and (28), the pressure gradient can be expressed as 

𝑑𝑝

𝑑𝑥
= 𝜂 sin 𝛼 − (

(𝑄−1−𝑑)−(𝑏1𝑏2𝑏3+𝑏1𝑏4)

(𝑏1𝑏2𝑏3+𝑏1𝑏4+(ℎ1−ℎ2))
) (

𝑀2

1+𝑚2
+

1

𝐷𝑎
) − (

𝑀2

1+𝑚2
+

1

𝐷𝑎
)                                                                      (29) 

The dimensionless pressure rise per one wavelength in the wave frame is defined as 

Δ𝑝 =  ∫
𝑑𝑝

𝑑𝑥

1

0
 𝑑𝑥                                                                                                                                                  (30) 

The dimensionless friction force F at the wall (right wall) across one wavelength is given by 

𝐹 =  ∫ ℎ1
2  (−

𝑑𝑝

𝑑𝑥
) 𝑑𝑥

1

0
                                                                                                                                       (31) 

4. Results and discussion 

In order to gain physical perception into the axial velocity, pressure rise, frictional force, temperature and 

concentration have been discussed by assigning the numerical values to the parameter encountered in the 

problem in which the numerical results are displayed with the graphic illustrations (see figures 1-6). 

Mathematics software Mathematica is used to evaluate the numerical results. In the present study following 

default parameter values are adopted for computations: t=0.4, x=0.6, ε=0.2, p=-0.5, k1=0.1, ϕ=
𝜋

6
, 𝛼=π/2, d=2, 

Da=0.1, λ1=0.1, M=3, η=0.5, m=1.5, β=0.2, Pr=3,  Br=0.2, Rn=0.5, S=0.5, Sr=2, Sc=0.2. All graphs therefore 

correspond to these values unless specifically indicated on the appropriate graph.    

4.1 Pressure rises 

To examine the pumping characteristics, figures 1 to 4 are outlined for pressure rise and frictional force 

against hall current parameter (m) and Jeffery fluid parameter (λ1). Moreover, these figures are divided into 

four regions: Retrograde pumping region (∆𝑝 > 0, 𝑄 ̅ < 0), peristaltic pumping region (∆𝑝 > 0, 𝑄 ̅ > 0), free 

pumping region (∆𝑝 = 0) and augmented region (∆𝑝 < 0, 𝑄 ̅ > 0). Figure 1 reveals that when the hall current 

parameter increases (m = 0.5, 1.5, 2.5), then the pumping rate enhances in free pumping (∆𝑝 = 0) and 

augmented (∆𝑝 < 0, 𝑄 ̅ > 0)  zones. However, it shows opposite behaviour in retrograde pumping region 

(∆𝑝 > 0, 𝑄 ̅ < 0) and peristaltic pumping region (∆𝑝 > 0, 𝑄 ̅ > 0). Effect of Jeffery fluid on pressure rise is 

depicted in figure 2 with fixed other parameters. Impact of Jeffery fluid on pressure rise is not significant. It can 

be seen from this figure that an increase in Jeffery fluid, the pumping rate enhances in augmented (∆𝑝 <

0, 𝑄 ̅ > 0) region whereas its behaviour is opposite in retrograde pumping (∆𝑝 > 0, 𝑄 ̅ < 0) and peristaltic 

pumping (∆𝑝 > 0, 𝑄 ̅ > 0) regions. Furthermore, the pumping curves coincide in the free pumping region (∆𝑝 =

0). 

4.2 Friction force 

Figures (3) and (4) divulges the variation of frictional force F against the flow rate for different parameters of 

interest like hall current parameter (m) and Jeffery fluid parameter (λ1). We notice from these figures that the 

frictional force exactly has an opposite behavior when compared to the pressure rise. 

4.3 Temperature and mass transfer characteristics 

Figure (5) reveals that the effect of thermal radiation parameter on temperature distribution with fixed other 

parameters. It is clear from this figure that the results in the temperature of the fluid reduce by an increase in 

thermal radiation parameter. Figure (6) demonstrates the effect of chemical reaction parameter on 

concentration distribution. It can be observed that the concentration distribution reduces as we increase in 

chemical reaction parameter (S = 0.5, 3.5, 6.5). 
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Figure 1: Impact of m on pressure rise (Δp) Figure 2: Impact of λ1 on pressure rise (Δp) 

  

Figure 3: Impact of m on frictional force (F) Figure 4: Impact of λ1 on frictional force (F) 

  

Figure 5: Impact of Rn on temperature distribution Figure 6: Impact of S on concentration distribution 

5. Conclusions 

In this paper, we study an impact of Hall current, joule heating and mass transfer on MHD peristaltic 

hemodynamic Jeffery fluid with the porous medium under an influence of chemical reaction through an 

inclined tapered vertical channel. The most findings are summarised below: 

Pumping rate enhances in free pumping (∆𝑝 = 0) and augmented (∆𝑝 < 0, 𝑄 ̅ > 0) zones whereas the trend is 

reserve in retrograde pumping region (∆𝑝 > 0, 𝑄 ̅ < 0) and peristaltic pumping region (∆𝑝 > 0, 𝑄 ̅ > 0) with 

increase in hall current parameter. 

Pumping rate enhances in augmented (∆𝑝 < 0, 𝑄 ̅ > 0) region whereas its behaviour is opposite in retrograde 

pumping (∆𝑝 > 0, 𝑄 ̅ < 0) and peristaltic pumping (∆𝑝 > 0, 𝑄 ̅ > 0) regions. Furthermore, the pumping curves 

coincide in the free pumping region (∆𝑝 = 0) by an increase in Jeffery fluid parameter. 

Frictional force exactly has an opposite behavior when compared to the pressure rise. 

Temperature of the fluid reduces by an increase in thermal radiation parameter. 

The results in concentration distribution reduce by an increase in chemical reaction parameter. 
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