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An investigation of Dufour effects on unsteady MHD convective flow of micropolar fluid past a vertical moving 
semi-infinite plate embedded in a porous medium is carried out. The dimensionless governing equations for 
this investigation are solved analytically using small perturbation approximation. The effect of various 
dimensionless parameters entering into the problem on the velocity, temperature and concentration profiles 
across the boundary layer are investigated through graphs. Also, the result of the skin friction coefficient, the 
rate of heat and mass transfer at the wall are prepared with various values of the parameters. It is observed 
that the velocity increases with the increase of Dufour number whereas it decreases with the increasing value 
of Schmidt number, Prandtl number and Eckert number. Also, magnitude of micro rotation increases with the 
increase of Eckert number. 

1. Introduction 

The theory of micropolar fluid introduced by Eringen (1966) deals with a class of fluids which exhibit certain 
microscopic effects arising from local structure and micro motions of the fluid elements. These fluids can 
support stress moments and body moments are influenced by spin inertia. These molecular fluids contain 
microconstituents that can undergo rotation. It can consist of a suspension of small, rigid, cylindrical elements 
such as large dumbbell- shaped molecules. The presence of these micropolar molecules can affects the 
hydrodynamics of the flow so that it can be distinctly non- Newtonian. The micro molecular fluid flow in porous 
medium has a number of applications such as oil exploration chemical catalytic reactors, thermal insulation 
and geothermal energy extractions etc. In view of its applications in large number of engineering problems 
many researchers have been carried out till date. The equations governing the flow of a micropolar fluid 
involve a spin vector (Microrotation vector) and microinertia tensor (gyration parameter) in addition to the 
velocity vector. Peddison et al., (1970) derived boundary layer theory for micropolar fluid which is important in 
a number of technical processes and applied this equation to the problem of steady stagnation point flow, 
steady flow past a semi- infinite plate. Eringen (1972) extended the theory of micropolar fluid and developed 
the theory of thermomicropolar fluid. The flow characteristics of the boundary layer flow of a micropolar fluid 
over a semi- infinite plate was investigated by Ahmadi (1976). The heat transfer aspect of the flow of 
micropolar fluid of semi- infinite plate was analysed by Soundagekhar et al., (1983). Due to the effect of 
magnetic fields on the boundary layer flow control and on the performance of many systems using micropolar 
fluid there has been a growing interest in the study of MHD flow in heat transfer in porous medium. The 
application of MHD attracted attention of many researchers in solution of many Engineering problems such as 
MHD generators, plasma studies, nuclear reactors, geothermal energy extractions. The mixed convection flow 
of micropolar fluid over a horizontal plate has been studied by Yucel (1989). The mixed convection in a 
micropolar fluid from a vertical surface with uniform heat flux was studied by Gorla (1992).  

2. Mathematical analysis 

We consider the unsteady two- dimensional MHD convection with heat and mass transfer flow of an 
incompressible, electrically conducting and micropolar fluid with Dufour effect, past a semi- infinite vertical 
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moving plate embedded in a porous medium. It is assumed that there is no applied voltage which implies the 
absence of an electrical field. The plate is semi-infinite in length; therefore, the flow variables are functions of 
y’ and t’ only. Under the usual Boussinesq’s approximation, the equations of mass, linear momentum, micro- 
rotation, energy and diffusion can be written as follows: 

Continuity equation: 

′∂
′∂

v
= 0

y                                                                                                                              (1) 

Linear momentum equation: 
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Angular momentum equation: 
γ

′ ′∂ ∂ ∂
′ ′

′ ′∂ ∂ ′∂

 
 
 

2
ω ω u

ρ j + v = 2t y y                                                                                (3) 

Linear equation: 

22 2D KT T k T v u CM T+ v = + +2 2t y ρC C y C Cy yp p p s

′ ′ ′∂ ∂ ∂ ∂ ∂
′

′ ′ ′∂ ∂ ∂′ ′∂ ∂

 
 
                                                            (4) 

Diffusion: 
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where x’, y’ and t‘ are the dimensional distances along and perpendicular to the plate and dimensional time, 
respectively, u’ and v’ are the components of dimensional velocities along x’ and y’ directions, respectively, C’ 
and T’ are the dimensional concentration and temperature, respectively, ρ is the fluid density, υ  is the 
kinematic viscosity, ܥఘ is the specific heat at constant pressure, σ is the fluid electrical conductivity, g is the 

acceleration due to gravity, ߚ and ߚ are thermal and concentration expansion coefficients, respectively, K’ is 

the permeability of the porous medium, B0 is the magnetic induction, DM is the chemical molecular diffusivity 
KT is the thermal diffusion ratio and k is the fluid thermal conductivity. The magnetic and viscous dissipations 
are neglected in this study. The second and third terms on the right-hand side of the momentum equation (2) 
denote the thermal and concentration buoyancy effects, respectively.  
It is assuming that the porous plate moves with constant velocity in the longitudinal direction. We also assume 
that the plate temperature and concentration are exponentially with time. Under these assumptions, the 
appropriate boundary conditions for the velocity, microrotation, temperature and concentration fields are: 

at 
( ) ( )∞ ∞
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where u୮ᇱ , Cᇱ  and TW are the wall dimensional velocity, concentration and temperature, respectively, ܥஶᇱ  and ஶܶ are the free stream dimensional concentration and temperature, respectively, n’ is constant. From (1), we 
have ∇= −v(v > 0)

 
(7), where v0 is the constant suction velocity at the plate and the negative sign indicating 

that the suction velocity is directed towards the plate. We introduce the following non- dimensional quantities 

to normalize the flow mod 
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 where Gc, Gr, M, K, Pr, Sc, Ec and Du are denote the solute Grashof number, thermal Grashof number, 
Hartmann number, permeability parameter, Prandtl number, Schmidt number, Eckert number and Dufour 
number respectively. Furthermore, the spin- gradient viscosity γ   which gives some relationship between the 

coefficients of viscosity and micro-inertia, is defined as 

γ ′ ′   
   
   

Λ 1 Λ
= μ + j = μ j 1 + β , β =

2 2 μ                                                                                                                  (9) 

where β denote the dimensionless viscosity ratio, in which Λ  is the Coefficient of gyro-viscosity (or vertex 
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viscosity). The governing equations (2), (3), (4) and (5) reduces to the following non-dimensional form: 
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3. Solution of the problem 

The system of equations (10) – (13) are non- linear and in order to obtained solution we expand velocity, 
microrotation, temperature and concentration in powers of the Eckert number Ec assuming that is very small. 
This is justified in low speed incompressible flows. Hence 
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                                        (15) 

where ε is a very small positive quantity and <<1. Substituting (15) in (10) – (13) and neglecting the higher 
order terms of O(ߝଶ), we have the following pairs of equations for (ݑ, ߱, ,ߠ ,ଵݑ) ) aidܥ ߱ଵ, ,ଵߠ  .(ଵܥ
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                                                                                (16) 

( ) ( )1 1 1 1 1 11 2U U N n U G r G c Cβ θ β ω′′ ′ ′+ + − + = − − −                                                                        (17) 
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The boundary conditions (14) reduces to the following form: 

at 0 1 0 0 1 1 0 1 0 10, , 0, , , 1, 1, 1, 1py U U U U U C Cω ω θ θ′= = = = − = − = = = =
 

as 0 1 0 1 0 1 0 1, 0, 0, 0, 0, 0, 0, 0, 0y U U C Cω ω θ θ→ ∞ = = → → → → → →                                                          (24) 

Now using multi parameter perturbation technique, we make the following substitution using Ec as the 
perturbation parameter: 
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( ) ( ) ( )0 01 02U y U y EcU y= + + − −
   ( ) ( ) ( )1 11 12U y U y EcU y= + + − −   

( ) ( ) ( )0 01 02y y Ec yω ω ω= + + − −
   ( ) ( ) ( )1 11 12y y Ec yω ω ω= + + − −

                                                           (25) 

( ) ( ) ( )0 01 02y y Ec yθ θ θ= + + − −
     ( ) ( ) ( )1 11 12y y Ec yθ θ θ= + + − −

 

Using (25) in the equations (16) – (23) and equating the co-efficient of 
0 1,Ec Ec  and neglecting the higher 

powers of Ec, we have the following equations: The zeroth order equations are:  
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( ) 02 02 02 02 02 021 2U U NU Gr GcCβ θ βω′′ ′ ′+ + − = − − −
                                                                                            (27) 
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                                                                                                                     (31) 

01 01 0C ScC′′ ′+ =                                                                                                                                                  (32) 

02 02 0C ScC′′ ′+ =                                                                                                                                                  (33) 

Subject to the boundary conditions: 
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The first order equations are: 
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                                                                                       (35) 
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                                                                                    (36) 
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11 11 11 11Pr Pr Prn DuCθ θ θ′′ ′ ′′+ − = −                                                                                                                    (39) 

12 12 12 01 11 12Pr Pr 2 Pr Prn U U DuCθ θ θ′′ ′ ′ ′ ′′+ − = − −                                                                                                (40) 

11 11 11 0C ScC nScC′′ ′+ − =                                                                                                                                        (41) 

12 12 12 0C ScC nScC′′ ′+ − =                                                                                                                                    (42) 

Subject to the boundary conditions: 

at 11 12 11 12 11 11 12 12 11 120, 0, 0, 1, 0, , , 1, 1y U U U U C Cθ θ ω ω′ ′= = = = = = − = − = =  

as 11 12 11 12 11 12 11 12, 1, 0, 0, 0, 0, 0, 0, 0y U U C Cθ θ ω ω→ ∞ → → → → → → → →                                     (43) 

Solutions of equations (26) – (42) are obtained but not presented for the sake of brevity 
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4. Skin- friction, the rate of heat transfer and the rate of mass transfer 

The co-efficient of skin- friction is defined in non- dimensional form as: τ = ቂడ௨డ௬ቃ௬ୀ  
The non- dimensional rate of heat transfer in terms of Nusselt number Nu is given by: Nu = ቂడఏడ௬ቃ௬ୀ

 

The non- dimensional rate of mass transfer in terms of Sherwood number Sh is given by: Sh = ቂడడ௬ቃ௬ୀ 

 

5. Results and discussion 

In this paper, Dufour effects on unsteady MHD convective heat and mass transfer flow of micropolar fluid past 
a vertical porous plate have been investigated. In order to get physical insight into the problem, the numerical 
calculations are carried out for velocity, microrotation, temperature, concentration, Sherwood number, Nusselt 
number and Skin-friction at the plate by assigning some arbitrary chosen specific values to the physical 
parameters like Du, Ec and Sc.  

                                   

Figure 1: (a): Velocity 
profile for different Du 
when Gr=2.0, Gc=4.0, 
M=0.5, Ec=0.05, Sc=2.0, 
Pr=0.71, n=0.1, t=1.0, 
n=0.2, ߝ = 0.001, ߚ =1.0, ߟ = 1.0, ܷ = 0.5, 

Figure 1: (b): Velocity 
profile for different Ec 
when Gr=2.0, Gc=4.0, 
M=0.5, Pr=0.71, 
Du=0.25, Sc=2.0, n=0.1, 
t=1.0, N=0.2, ߝ = ߚ,0.001 = 1.0, ߟ = 1.0, ܷ = 0.5 

Figure 2: Microrotation 
profile for different Ec 
when Gc=4.0, M=0.5, 
Pr=0.71, Du=0.25, 
Sc=2.0, n=0.1, t=1.0, 
N=0.2, ߝ = 0.001, ߚ =1.0, ߟ = 1.0, ܷ = 0.5 , 
Gr=2.0 

Figure 3: (a): 
Temperature profile for 
different Du when 
Gc=4.0, Gr=2.0, M=0.5, 
Ec=0.05, Pr=0.71, 
Sc=2.0, n=0.1, t=1.0, 
N=0.2, ߝ = 0.001, ߚ =1.0, ߟ = 1.0, ܷ = 0.5 

                            

Figure 3: (b): 
Temperature profile for 
different Ec when 
Gc=4.0, Gr=2.0, M=0.5, 
Sc=2.0, Pr=0.71, 
Du=0.25, n=0.1, t=1.0, 
N=0.2,ε=0.001, β=1.0, 
η=1.0, 0.5pU =  

Figure 4: (a): 
Concentration profile for 
different Sc when 
Gc=4.0, Gr=2.0, M=0.5, 
Ec=0.05, Pr=0.71, 
Du=0.25, n=0.1, t=1.0, 
N=0.2ε=0.001, β=1.0, 
η=1.0  0.5pU =  

Figure 4: (b): 
Concentration profile for 
different Ec when 
Gr=2.0, Gc=4.0, M=0.5, 
Pr=0.71, Du=0.25, 
Sc=2.0, n=0.1, t=1.0, 
N=0.2, ε=0.001, β=1.0, 
η=1.0, 0.5pU = , 

Figure 5: (a): Skin-friction 
coefficient for different 
Du when Gc=4.0, 
Gr=2.0, M=0.5, Ec=0.05, 
Pr=0.71, Sc=2.0, n=0.1, 
t=1.0, N=0.2,ε=0.001, 
β=1.0,η=1.0, 0.5pU =  

                                  

Figure 5: (b): Skin-friction 
coefficient for different Ec 
when Gc=4.0, Gr=2.0, 
M=0.5, Pr=0.71, Du=0.25, 
Sc=2.0, n=0.1, t=1.0, 
N=0.2,ε=0.001,β=1.0, 
η=1.0, 0.5pU =  

Figure 6: (a): Nusselt 
number for different Du 
when Gc=4.0, Gr=2.0, 
M=0.5, Ec=0.05, 
Pr=0.71, Sc=2.0, n=0.1, 
t=1.0, N=0.2, ε=0.001, 
β=1.0,η=1.0, 0.5pU =  

Figure 6: (b): Nusselt 
number for different Ec 
when Gc=4.0, Gr=2.0, 
M=0.5, Pr=0.71, Du=0.25, 
Sc=2.0, n=0.1, t=1.0, 
N=0.2,ε=0.001,β=1.0,η=1.0
, 0.5pU =  

Figure 7: Sherwood 
number for different Ec 
when Gc=4.0, Gr=2.0, 
M=0.5, Sc=2.0, Du=0.25, 
Pr=0.71, n=0.1, t=1.0, 
N=0.2,ε=0.001,β=1.0, 
η=1.0, 0.5pU =  
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Figures 1(a) and 1(b) represent the variations of non- dimensional velocity profile u against y for different 
values of different governing parameters like Du and Ec. Figure 1(a) shows that the velocity profile increases 
on increasing the Dufour number Du in the region away from the plate. This implies that, Dufour number tends 
to rises the fluid velocity in the region away from the plate. Figure 1(b) displays the influence of the Eckert 
number Ec on the velocity profile. Increasing the Ec decreases the velocity. Figure 2 depicts the effect of 
Eckert number Ec on the microrotation. It is observed that the microrotation increases with an increasing of 
the Eckert number. Figures 3(a)and 3(b) demonstrate the variations of temperature distribution against y 
under the influence of the parameters Du and Ec. Increasing the Dufour number Du, increases the 
temperature of the flow fluid as seen in figure 3(a). This implies that the Dufour number tends to enhance fluid 
temperature throughout the boundary layer region. Figure 3(b) shows the temperature profile across the 
boundary layer for different values of Eckert number Ec. The figure shows that an increase in Ec results in a 
increasing the temperature distribution. The influence of Schmidt number Sc, Eckert number Ec on the 
concentration profiles are plotted in figures 4(a) and 4(b). Figure 4(a) depicts the effect of Schmidt number Sc 
on concentration profile. This implies that an increase in the value of Sc cause a fall in the concentration 
throughout the boundary layer. Figure 4(b) shows that the concentration distribution increases with the 
increasing of the Ec. Figure 5(a) depicts that skin-friction τ at the plate decreases with the increasing value of 
Dufour number Du. From figure 5(b) it is clear that τ at the plate increases due to the effect of Ec. Figures 6(a) 
and 6(b) display the rate of heat transfer decelerates under the influence of Du, Ec and Pr. The nature of 
Sherwood number (rate of ass transfer) is presented in figures 7.  From these figure shows that the rate of 
mass transfer decreases with the increasing value Ec. 

6. Conclusion 

Our theoretical investigation can be summarized to the following conclusions:  
1. A rise in Dufour number increases the velocity profile and temperature profile whereas velocity decreases 
and temperature profile rise with the increasing value of Eckert number. 2. An increase in Eckert number 
contributes to increase the Magnitude of microrotation. 4. The concentration profile decreases with the 
increasing value of Schmidt number whereas it rises with the increasing value of Eckert number. 5. Skin- 
friction decreases with the increase of Du whereas it increases with the increase of Ec and Sc. 6. The rate of 
heat transfer decreases with the increasing values of Dufour number and Eckert number. 7. The rate of mass 
transfer tends to decrease with the increasing value of Eckert number. 
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