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This paper builds three models about the surface volume ratio 

energy Ec (N) of the Wulff construction with the total number of atoms, N, in the system as a variable. The 

results from model prediction are consistent with those from the appropriate cluster experiment and the 

computer simulation. In allusion to the uncertainty of the structure of atomic clusters, the geometric and 

energy models of Wulff structure are used to approximate the energy and morphology of clusters and optimize 

their chemical properties. 

1. Introduction 

It is well-known that the Wulff construction (available by taking the minimum surface energy per unit volume) is 

a standard method to get an equilibrium structure of bulk crystals. Although the atomic cluster differs from the 

Wulff construction, it has the lowest system surface energy just as crystals have. At this point, the cluster 

morphology and energy may be similar to Wulff construction (Zhu et al., 2011; Li et al., 2009; Li et al., 2013; 

Jiang et al., 2000). 

The thermodynamic behavior of nanocrystals differs from that of their corresponding bulk materials mainly 

because of the large surface-to-volume ratio that strongly influences the chemical and physical properties of 

the nanocrystals. The broken bonds of surface atoms inevitably lead to the instability of materials at the 

nanoscale (e.g., decreased melting point and cohesive energy of ultrafine metallic particles with decreased 

size). Thus, a number of excellent models for size and shape dependence of the melting behavior of a 

nanosolid have been developed in terms of classical thermodynamics and modern molecular dynamics. In 

these models, the most important consideration is the surface-to-volume ratio because the vibration frequency 

of surface atoms is distinct from that of the inner ones. An exponential or linear relationship between the 

material size and thermodynamic function has been obtained, and the good reasonability of the established 

models has been proven. However, the bond characteristics of a system are unclear. In fact, the bond state of 

a system is directly related to the thermal properties. The atomic cohesive energy can be obtained from the 

average coordination number and bond strength per atom (Zhang and Chen, 2018). 

Metallic nanomaterials have been the object of a growing interest due to their interesting properties (e.g. their 

electronic, magnetic, optic, catalytic, mechanical and thermodynamic properties) and have been widely used 

as functional materials in physics, chemistry, and biology. For practical application of nanomaterials, we need 

to know which structures are stable and whether they maintain their specific structures under given conditions. 

The most significant structural change originates from a solid-to-liquid phase transformation, namely, 

reasonable information on the solid-to-liquid transition is necessary. Therefore, with the miniaturization of 

devices, one has to envisage an insurmountable stability problem and understanding their thermodynamic 

properties is essential both for practical applications and from a fundamental point of view. As we all know, the 

melting temperature Tm is an important physical quantity accounting for the thermodynamics of materials, by 

which we can derive almost all thermodynamic properties of materials. And on the other hand, the properties 

of materials are functions of the ratio of working temperature to melting temperature. For nanomaterials, the 
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melting temperature have a decreasing tendency with the reduction of size which will increase the ratio and 

elevate the properties of nanomaterials. However, nanocatalysts might melt at temperatures far below the 

melting temperature of bulks and lose their predominant catalytic functionality. Therefore, melting becomes 

one of the failure modes at elevated temperatures for nanocatalysts. To resolve this limit, nanoscaled 

bimetallic alloys have been of special interest because of higher stability. Nanoscaled bimetallic alloys are a 

class of materials that show a combination of properties which are associated with the two constituent metals. 

In many cases, there is a great enhancement in their specific physical and chemical properties owing to a 

synergistic effect. 

2. Model 

As is known, nanoparticles are a state of matter that has properties different from either molecules or bulk 

solids, and thus their shape and structure of nanoparticles are strongly functions of the number of atoms (N) in 

a system. However, a nanoparticle with certain size usually has similar spherical shape in order to minimize 

surface energy although they could be in different structures, since surface energy directly determine the 

stability of different shapes and sizes, especially for the particles from 1nm to 100nm. Moreover, with size 

dropping, nanoparticles usually take the densest packing structure, for example, Na and Mo nanoparticles 

would have an FCC or more like icosahedron structures and Co nanoparticles with 4 N 60 have an 

icosahedron structure, while the structure becomes unstable for a large number of atoms and transforms into 

a Wulff construction, which is just a patch of the FCC lattice. 

In view of the closed-packed arrangement of atomic clusters, a Wulff sphere construction of face-centered 

cubic crystal is referenced in this paper. The Wulff sphere is available by symmetrically shearing the six 

vertices of the octahedron, thereby (100) faces of six squares and (111) faces of eight hexagons are formed 

on surface. The Wulff sphere is just a chamfered octahedron TO structure. As shown in Fig. 1, for the (111) 

faces, there are three edges common to the (100) faces of the squares, on each of which the number of atoms 

is supposed to be nsqu. The number of atoms on the other three edges is supposed to be nhex. As the number 

of bonds depends on the dimension and structure of the system simultaneously, in this paper, the geometric 

characteristics of the Wulff sphere construction are described with bonds ratio Ba / Bt as the variable, then, 

=Ns/N                                                                                                                                                                (1) 

Where Ns represents the number of atoms on the surface of the system. For the Wulff sphere construction, the 

surface atoms cover the atom N(111) on the (111) faces, the atom N(100) on the (100) faces, the atom Ne on the 

edge and the atom Nv on the vertex. Here, the ratio of surface to volume is used as mentioned in Jiang’s work. 

Since is the simplest function to describe the shape effect of nanopaticles, the smaller the value, the more 

spherical the shape, and thus the smaller surface energy. It is clear that the same value for both Wulff 

construction and icosahedron is found and this is the smallest value compared with other shapes. Thus, taking 

Wulff shape to describe small nanoparticles becomes in valid within the acceptable error range. As size 

increases, 0 for any shape, that is to say the shape effect will disappear for larger particles. In addition, it is 

commonly observed that most of fcc particles correspond to the Wulff shape, and even can be extended to 

most closely packed materials, which is confirmed in other works where the most appropriate structure of the 

nanoparticles can also be Wulff. Based on the discussion above, taking Wulff structure as the shape of 

nanoparticles in this work is reasonable. 

According to the Wulff sphere geometrical characteristics given in Fig. 1, N(111), N(100), Ne and Nv are 

expressed as follows: 

N(111)=4[(nsqu+nhex)(nsqu+nhex-9)+2nsqunhex+14]                                                                                                   (2) 

N(100)=6(nsqu-2)2                                                                                                                                                  (3) 

Ne=12(2nsqu+nhex-6) and Nv = 24                                                                                                                       (4) 

 

Figure 1: A sketch of a general TO structure with eight hexagonal (111) and six square (100) facets at 

surfaces (Gu et al., 2001; Coyle et al., 2001) 
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By adding the above formulae, the number of atoms on the surface of the system can be available, namely: Ns 

= N111+N100+Ne+Nv. Besides, as a function of nsqu and nhex, the total number of atoms in the system, N, is 

determined by the following formula: 

N={2[2(nsqu-1) + nhex]3+2(nsqu-1) + nhex}/3-2(nsqu-1)3-3(nsqu-1)2-(nsqu-1)                                                              (5) 

By defining the ligancy of the surface atoms in different positions and combining the number of corresponding 

surface atoms, the average ligancy Zs of the surface atoms can be available, 

Zs=(Z(111)N(111)+Z(100)N(100)+ZeNe+ZvNv)/Ns                                                                                                         (6) 

Where, Z(111), Z(100), Ze and Zv are the ligancies of the atoms on the (111) faces, on the (100) faces and at the 

vertices, then Z111 = 9, Z100 = 8, Ze = 7，Zv = 6. For face-centered cubic crystals, the ligancy of atoms in the 

bulk is 12, i.e. Zb = 12. Therefore, the number of corresponding bonds is Ba = [NsZs+(N-Ns)Zb]/2 and Bt = 

NZb/2, that is: 
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It is difficult to determine arithmetic values  and Ba/Bt for the Wulff sphere construction of different substances 

since there are two variables contained in the above formula, nsqu and nhex. The two variables are therefore 

incorporated into one to simplify the calculation process, which can be achieved by considering the Wulff 

sphere construction formation conditions. For any Wulff sphere construction, the following conditions must be 

met: 
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Where (100) and (111) are the surface energies of (100) faces and (111) faces, respectively. D is the distance 

from the face to the center of the chamfered octahedron. It follows that the Wulff sphere construction depends 

on the substance itself, and its geometrical characteristics depend on the ratio (100)/(111). In the formula (8), 

D(100)/D(111) can be expressed as: D(100)/D(111) = d(100)((100)-1)/d(111)((111)-1), where d(100) and d(111) are the 

interlayer spacings of the (100) faces and the (111) faces, respectively. For face-centered cubic crystal, 

d(100)/d(111) = √3/2. (100) and (111) are the number of layers of (100) faces and (111) faces at the intervals of 

2D(100) and 2D(111), respectively. For a typical TO structure consisting of a hexagonal and a square facets, 

there is a relationship: 
𝜉100

𝜉111
=
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2𝑛𝑠𝑞𝑢+2𝑛ℎ𝑒𝑥−3
. According to the formula (8), this formula can be re-expressed as: 
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The relationship between nhex and nsqu can be determined from the formula (9) and based on the ratio 

(100)/(111) for different substances. As shown in the Table 1, there are ratios of (100)/(111 of the known face-

centered cubic crystals. (100) is generally greater than (111) since the (100) face has more missing bonds, such 

that (100)/(111) > 1. 

In the formula (9), nhex/nsqu is a monotone function of (100)/(111) and increases as the value of (100)/(111) goes 

up. It means that the substance with a higher value (100) requires smaller (100) faces on its Wulff sphere 

construction surface. Note that, if nhex = nsqu, (100)/(111) = 2/√3. This is a special Wulff sphere construction, also 

called as a regular chamfered octahedron (R-TO) whose surface is composed of regular hexagons and 

squares. It followed that, when (100)/(111) > 2/√3, nhex > nsqu; when (100)/(111) < 2/√3, nhex < nsqu. We note that 

there is a limit case, that is, for any value nhex, nsqu = 1. This means the complete octahedral structure (OH) 

without any chamfer. However, OH structures are generally unstable due to their high energy status. 

In order to compare with the real cluster structure, the geometric parameters of IH and CO structures are 

imported: 

Ns=10(-1)2+2 (IH, CO)                                                                                                                                    (10) 
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Where, since all the edges on the surfaces of the IH or CO structures are identical,  represents the number of 

atoms on each edge. 

Due to the substitution of bonds which is directly correlated to the binding energy, based on the surface 

broken bond theory, the size-dependent binding energy function can be approximately expressed as follows: 

Ec(N)/Ec() = [(Ba/Bt)1/2+Ba/Bt]/2                                                                                                                      (14) 

According to the formula (14), Ec(N) is still in line with the broken bond theory, although the binding energy is 

proportional to Ba or√Ba. Thus the formula (14) can also be used to describe the binding energy of any 

system. 

Table 1: The values of (100) and (111) and the corresponding ratios (100)/(111) for FCC metallic elements. The 

presented (100)/(111) values respectively for R-TO and OH structures are determined according to Wulff 

theorem (Eq. (8)) for comparison 

element (100) (J m-2) (111) (J m-2) (100)/(111) 

Au 1.80 1.52 1.184 

Ag 1.40 1.20 1.167 

Ni 2.88 2.44 1.180 

Pd 2.15 1.85 1.162 

Ca 0.5 0.43 1.163 

Sr 0.39 0.33 1.182 

Cu 2.17 1.83 1.186 

Pt 2.98 2.54 1.173 

Rh 3.15 2.7 1.167 

Ir 3.74 3.19 1.172 

Pb 0.64 0.55 1.164 

Al 1.68 1.45 1.159 

Ac 1.14 1.03 1.107 

Th 2.36 1.85 1.276 

R-TO   2/√3=1.155 

OH   √3=1.732 

3. Results and discussion 

 

Figure 2: (N) functions for IH (and CO) and different Wulff constructions in terms of Eq. (3.1) (Biener et al., 

2005; Volkert et al., 2006) 
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According to the formula (1), the surface volume ratios  of IH, CO structures and Wulff sphere construction 

with different values of (100)/(111) are subjected to change with the number of atoms N in the system, as 

shown in Fig. 2.  is the simplest function used to describe the geometrical characteristics of clusters, where 

values  of the IH and CO structures are equal. It is obvious from Fig. 2 that the error between IH (or CO) and 

the Wulff sphere construction is lower and tends to zero as the value N increases. The coincidence of function 

(N) of IH and Wulff sphere construction implies that the IH structure has a Wulff-like morphology. The 

relatively large  error between IH and Wulff sphere construction suggests that even though the crystal 

structure takes the morphology of Wulff sphere, the number of atoms on its surface is still greater than the that 

on IH structure. Therefore, the morphology of clusters more tends to be spherical. On the other hand, when N 

is a constant, the value  of Wulff sphere construction depends on the ratio of (100)/(111). As shown in Fig. 2, 

as the value of (100)/(111) decreases, the  value falls down accordingly, which means that a higher value nsqu 

contributes to the formation of a spherical structure. This further explains that, compared with Wulff sphere 

construction,  

CO structure has a lower value . Therefore, the minimum and maximum of the Wulff sphere construction 

correspond to (100)/(111) = 1 and (100)/(111) =√3, respectively, where (100)/(111) =√3 means OH structure. It is 

worth noting that in Fig. 2, the errors of the values  of different Wulff sphere constructions are extremely 

lower, that is to say, the geometric error of the Wulff caused by different ratios of (100)/(111) are negligible. 

Therefore, the standard Wulff sphere construction - R-TO ((100)/(111) = 2/√3) can approximately describe the 

function (N) of any atomic cluster within the error range. 

 

Figure 3: The comparison the function values Ba/Bt for different structures (Ouyang et al., 2006; Kofman et al., 

1994; Jiang et al.,2001) 

As shown in Fig. 3, the function values Ba/Bt for different structures are compared. It is found that the Ba/Bt is 

also correlated with structure and decreases as the number of atoms N falls down. The Ba/Bt of IH structure is 

greater than that of CO and Wulff in a full size range, which means that the total number of bonds in IH 

structure is highest. As shown in Fig. 3, it is also suggested that the Ba/Bt in CO structure is lower than that in 

any Wulff sphere construction, although it is also face-centered cubic crystal with the lowest value . Besides, 

a series of functions Ba/Bt for Wulff sphere construction with (100)/(111) between 1 and √3 are given in Fig. 3. It 

is found that the Ba/Bt of OH structure is minimal, and the error in values Ba/Bt between different Wulff sphere 

structures is also negligible. Values Ba/Bt are correlated to the value  on the one hand, or the surface 

morphology of the system and on the other hand have something to do with the binding energy Ec(N). As a 

result, the Wulff sphere, the IH and the CO structures have similar values Ba/Bt, The Wulff construction can 

describe the characteristics of atomic clusters not only in morphology or structure, but also in binding energy. 

4. Conclusion 

Based on the total number N of atoms in the system, this paper gives three models for the surface volume 

ratio , the bonds ratio Ba/Bt and the binding energy Ec(N) of the Wulff construction. The model prediction 

results are consistent with those of the corresponding atom cluster experiments and computer simulation. As a 
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consequence, even if the atomic cluster structure is uncertain, the geometry and energy model of the Wulff 

construction can be used to approximately describe the energy and morphology of the cluster. 
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