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In the biomass-fired boilers intensive deposit layer on the heating surface is formed. For deposit elimination 

various cleaning procedures are applied. The mechanical effect of cleaning is based on vibration of the 

system. The efficiency of the procedure depends on the parameters of the tube-deposit vibrating system. In 

the paper the system is assumed to be a truly nonlinear oscillator with linear damping which is excited with a 

periodical cleaning force. The exact nonlinear resonance for the system is determined and exact steady states 

of the oscillator are computed. Special attention is given to the influence of damping properties of the deposit 

on the system vibration and on the energy dissipation due to mismatch between the excitation and damping. 

For determination of the energy change an approximate analytic solving procedure is developed. The method 

represents the adopted version of the time variable amplitude and phase procedure. As an example, the tube-

deposit system described with damped Duffing oscillator excited with Jacobi elliptic function is considered. 

Analytically obtained solution is compared with numerical one. The results are in good agreement and prove 

the correctness of the suggested model. Finally, the generalized mathematical model of the tube-slag 

oscillatory system gives prediction of nonlinear resonant vibration caused by periodical cleaning force. 

1. Introduction 

Nowadays, significant attention is given to effective energy production by firing of biomass. Usually, 

agricultural residual and herbaceous material, wood or bark, human and animal waste, contaminated or 

industrial biomass (Masia et al., 2007) are fired. During combustion of the solid biomass flues it is found that 

ash is built up and the un-burnt materials form a thick deposit layer on heating surfaces (Kleinhans et al., 

2017) that decreases or even stops the heat transfer in the boiler. Various methods for deposit shedding are 

developed Zbogar et al. (2009) and more recently Laxminarayan et al. (2017). Most often cleaning procedures 

are applied. For all of these methods it is common that they cause vibration in the system. The vibration of 

tubes gives a contribution to tube cleaning due to shaking of the build-up material. If the excitation force is 

higher than the adhesion force between the deposit and tube the deposit removes from the heating surface. 

However, one may wonder which intensity of the cleaning force to utilize for cleaning of the surface without 

damaging it. In praxis, this force is determined by the operator from case to case. To overcome this lack and 

to generalize the vibration problem, we introduce the mathematical model for vibration of the deposit-tube 

system. The model is a non-homogenous second order truly nonlinear differential equation (Cveticanin, 2018). 

In the paper the exact steady states of the oscillator are computed and analyzed. Vakakis and Blanchard 

(2018), developed a method for computing exact steady states for the damped Duffing oscillator. In this paper 

we extended the method for solving equations with strong nonlinearity of any order (integer or non-integer). 

For the condition when the restitution force in oscillator corresponds to the adhesion force between deposit 

and tube the nonlinear vibration response is determined. Amplitude and frequency of vibration depend on the 

excitation parameters but also on the damping property of the deposit. If the damping property of the deposit 

layer varies it causes changes in vibration. In the paper the perturbed model of the tube-deposit oscillating 

system is also considered. Approximate solution of the problem is obtained. It is concluded that the damping 

parameter seems to be the appropriate control parameter for optimization of the cleaning process.  
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2. Periodically excited strong nonlinear oscillator 

The tube with deposit excited with the external period force is modeled as one degree of freedom oscillatory 

system. Physical model is a mass – spring system. Mass is the sum of tube and deposit masses. The elastic 

force of the tube - deposit system is assumed to be a strong nonlinear deflection function. The damping force 

of the deposit is supposed to be the linear velocity function. Vibration is caused with the time periodical 

cleaning excitation force. Then, the non-dimensional equation of vibration is  

�̈� + 𝑐𝛼𝑥|𝑥|𝛼−1 + 𝑏�̇� = 𝐹(𝑡) (1) 

where  𝑐𝛼 is the coefficient of rigidity, b is the damping coefficient, 𝛼 > 1 is the order of nonlinearity (any 

integer or non-integer) and F(t) is the excitation force. If in the system damping and excitation are omitted the 

equation (1) simplifies into    

�̈� + 𝑐𝛼𝑥|𝑥|𝛼−1 = 0. (2) 

For initial conditions 𝑥(0) = 𝐴 and �̇�(0) = 0 the solution of Eq(2) is  

𝑥 = 𝐴𝑐𝑎(𝛼, 1, 𝛺𝑡), (3) 

where A is the amplitude of vibration, ca is the cosine Ateb function (Cveticanin, 2018) and Ω is the frequency 
of the Ateb function which satisfies the relation 

−
2

𝛼 + 1
Ω2 + 𝑐𝛼𝐴𝛼−1 = 0. (4) 

Adopting the procedure for steady state solution of strong nonlinear differential equations (Vakakis and 

Blanchard, 2018) it is obtained that for  

𝐹(𝑡) = −𝐹0𝑠𝑎(𝛼, 1, 𝛺𝑡),           (5) 

where sa is the sine Ateb function and 

𝐹0 = 𝑏𝐴𝛺
2

𝛼 + 1
. (6) 

the relation (3) with (4) is the exact solution of (1).  

Remark: Ateb function is the inverse Beta function. For α = 3 it is transformed into Jacobi elliptic function and 

for α = 1 in trigonometric harmonic function.  

For the steady state motion (3) the excitation is with a periodical sa function with period (Cveticanin, 2018) 

𝑇 =
2𝛱

𝛺
, (7) 

where Π = B(1/(α+1), ½) and B is the beta function. The sa function is the simplified version of a multi-

harmonic force which is the sum of harmonic functions with various frequencies. In Figure 1a) the sa excitation 

function for Ω = 1 and various values of α is plotted. Analyzing Fig.1a) it is seen that the higher is the value of 

α, the longer is the period of the function sa. Using Eq(5) the considered model of the periodically excited and 

damped truly nonlinear oscillator is 

�̈� + 𝑐𝛼𝑥|𝑥|𝛼−1 + 𝑏�̇� = −𝐹0𝑠𝑎(𝛼, 1, 𝛺𝑡). (8) 

 
                   

Figure 1: a) The sa function for Ω=1 and α=1 (red line), α=2 (green line) and α=3 (blue line); b) x-t diagrams 

for F0=1 (red line), F0=2 (green line) and F0=3 (blue line) and analytically obtained function (dotted line). 

 

For initial conditions  

𝑥(0) = 0,        �̇�(0) = 0, (9) 

the steady state solution Eq(3) exists if conditions Eq(4) and Eq(6) are satisfied.              
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3. Steady state motion  

According to the previous consideration it is obvious that for the excitation parameters F0 and Ω, and system 

parameters b and cα, the Eq(1) has the steady state solution Eq(3) for 

𝐴 = (
2

𝛼+1

Ω2

𝑐𝛼
)

1

𝛼−1
,              𝑏 = 𝐹0 (

𝑐𝛼

Ω𝛼+1
(

𝛼+1

2
)

𝛼
)

1

𝛼−1
. (10) 

Namely, if the damping coefficient b satisfies the relation (10)2 the steady state vibration Eq(3) of the system is 

periodical and has the amplitude (10)1. The steady state motion remains unperturbed if the damping 

coefficient is controlled according to (10)2. Thus, if the frequency of excitation is constant and the intensity of 

excitation is varied, the damping coefficient has to be treated according to (10)2 and the amplitude of vibration 

(10)1 is unperturbed.  

In Figure 1b) the numerical solution of 

�̈� + 𝑥|𝑥| +
9

4
𝐹0�̇� = −𝐹0𝑠𝑎(1,2, 𝑡), (11) 

is compared with analytical solution (3)  

𝑥 =
2

3
𝑐𝑎(1,2, 𝑡)      (12) 

It can be seen that there is no difference between the analytical and numerical solution. However, analysing 

relations (10) it is obvious that the steady state motion exists for constant intensity and variable frequency of 

excitation, if the damping coefficient is controlled due to (10)2. Then, the amplitude of the steady state motion 

is also varied, according to (10)1. In Figure 2 the amplitude of vibration and damping coefficient versus 

excitation frequency curves are plotted. The dimensionless amplitude A2/A1, frequency Ω2/Ω1 and damping 

coefficient b2/b1, are introduced. It is concluded that the amplitude of vibration depends on the excitation 

frequency: the higher is the value of the frequency, the higher is the amplitude of vibration. For the Duffing 

oscillator with cubic nonlinearity the amplitude – frequency relation is linear. For 1 < α < 3 the amplitude 

increase with frequency is slower, while for α > 3 it is faster than for the boundary value α = 3. The damping 

coefficient decreases by increasing the frequency of excitation. The decrease is faster for higher values of 

nonlinearity order α. 

 
Figure 2: a) amplitude-frequency and b) damping-frequency diagrams for: α =2 (red line), α =3 (green line) 

and α =10 (blue line). 

 

In Figure 3 the amplitude – excitation intensity and frequency – excitation intensity functions are plotted. F2/F1 
is the dimensionless excitation intensity. 
 

 
Figure 3: a) amplitude-excitation and b) frequency-excitation diagrams for: α =2 (red line), α =3 (green line) 

and α =10 (blue line). 

 
From Fig.3 it is seen that both vibration parameters, the amplitude and the frequency, increase by increasing 
of the excitation intensity. The amplitude of vibration increases faster and the frequency of vibration slower if 
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the order of nonlinearity α is higher. Thus, for α tends to infinity, the frequency – excitation intensity relation 
tends to be linear. 

4. Energy dissipation rate 

As it is mentioned in Section 2, the relation EQ(3) is the solution of the free undamped oscillator Eq(2) for 

initial conditions 𝑥(0) = 𝐴 and �̇�(0) = 0. The oscillator is a conservative system and the total energy of the 

system is constant  

𝐸 =
𝑐𝛼

𝛼 + 1
𝐴𝛼+1 = 𝑐𝑜𝑛𝑠𝑡. (13) 

The energy constant depends on the amplitude of vibration A. If for certain value of A the excitation frequency 

Ω satisfies the relation (10)1 and the excitation intensity or damping coefficient b correspond to the relation 

(10)2 the forced and damped nonlinear oscillator is dynamically equivalent to the free nonlinear undamped 

oscillator Eq(2) and oscillators have the same energy level 

𝐸 =
𝑐𝛼

𝛼 + 1
𝐴𝛼+1 =

𝑐𝛼

𝛼 + 1
(

2

𝛼 + 1

Ω2

𝑐𝛼
)

𝛼+1
𝛼−1

=
𝑐𝛼

𝛼 + 1
(

𝛼 + 1

2

𝐹0

𝑏𝛺
)

𝛼+1

. (14) 

Expression Eq(14) describes the influence of the excitation force on the energy level of the oscillator if 

conditions Eq(10) are satisfied. By varying the excitation parameters F0 and Ω the vibration energy is 

changing. If the excitation frequency is higher, the amplitude of vibration and the vibration energy are higher. 

The same conclusion is evident for higher value of the excitation force. By decreasing of the excitation 

parameters the vibration energy decreases, too. During decrease of the excitation parameters the energy 

dissipation occurs. If the initial energy is E1 and the final energy for the decreased excitation E2 the energy 

difference is E1 - E2 >0. Dividing the energy difference with the initial energy E1 a dimensionless coefficient ε, 

the so called ‘dissipation rate’ is defined as  

𝜀 = 1 −
𝐸2

𝐸1
. (15) 

The dissipation coefficient varies in the interval ε = [0,1]. For ε = 0 there is no dissipated energy, while for ε = 1 

the whole energy is dissipated. Substituting (14) into (15) we have 

ε = 1 − (
𝐴2

𝐴1
)

𝛼+1

= 1 − (
𝐹2

𝐹1
)

𝛼+1

= 1 − (
Ω2

Ω1

)

2
𝛼+1
𝛼−1

= 1 − (
𝑏1

𝑏2
)

𝛼+1

. (16) 

The energy dissipation occurs if A1 > A2, F1 > F2, Ω1 > Ω2 and b1 < b2. The value of the dissipation rate 

depends on the amplitude, frequency, excitation or damping ratio. The higher is the ratio A1/A2, F1/F2 and 

Ω1/Ω2 the higher is the energy dissipation ε. By increasing the amplitude and frequency of vibration or 

increasing the frequency and intensity of the excitation force in comparison to the previous value, the energy 

dissipation rate will increase, too. In contrast, if the damping coefficient is decreased the damping rate is 

increased.  

 
Figure 4: a) dissipation rate – frequency and b) dissipation rate – excitation intensity diagrams for α =2 (red 

line), α =3 (green line), α =10 (blue line) and 𝛼 = ∞ (black dashed line) 

5. Vibration of the perturbed tube-deposit oscillatory system 

In Figure 4 the energy dissipation rate versus excitation frequency and excitation intensity for various order of 

nonlinearity is plotted. For Ω2/Ω1 < 1 the higher the order of nonlinearity the smaller is the value of the energy 

dissipation rate. Besides, for higher order of nonlinearity the dissipation rate decrease is faster with excitation 

frequency than for smaller order of nonlinearity. If the of nonlinearity is extremely high the limit dispersion rate 

is 

ε = 1 − (
𝛺2

𝛺1
)

2

. (17) 
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Analysing the relation Eq(16) and Fig.5b it is obvious that the energy dissipation – excitation intensity 

expression depends on the order of nonlinearity α, too. The value of the dissipation rate, for the same rate of 

the excitation intensity (F2/F1 < 1), is smaller for smaller order of nonlinearity α. By increasing the nonlinear 

property of the oscillator, whose excitation intensity is constant, the energy dissipation is increasing. The 

sensitivity of the system on the variation of the intensity of excitation is smaller if the nonlinearity is higher. 

6. Vibration of the perturbed tube-deposit oscillatory system 

To obtain the steady state motion Eq(3) of the oscillator Eq(1) the coefficient of damping b has to satisfy the 

relation (10)2. However, if there is a mismatch between the excitation and damping force due to variation of 

the damping coefficient b1 in comparison to b, some perturbation of the steady state vibration would occur. 

Mathematical model of the perturbed system is  

�̈� + 𝑐𝛼𝑥|𝑥|𝛼−1 + 𝑏�̇� = −𝐹0𝑠𝑎(1, 𝛼. 𝛺𝑡) − 𝜀𝑏1�̇�, (18) 

where εb1 <<1 is a small perturbation parameter. To solve (18) the approximate method based on time 
variable amplitude and phase is introduced. The solution of the system is assumed in the form 

𝑥 = 𝐴(𝑡)𝑐𝑎(𝛼, 1, 𝜓(𝑡)),       �̇� = −
2

𝛼 + 1
𝐴(𝑡)𝛺(𝑡)𝑠𝑎(1, 𝛼, 𝜓(𝑡)), (19) 

with 

�̇�(𝑡) = 𝛺 + 𝜃(𝑡). (20) 

where A(t), ψ(t) and θ(t) are time variable functions. The first time derivative of (19)1 is  

�̇� = �̇�(𝑡)𝑐𝑎(𝛼, 1, 𝜓(𝑡)) −
2

𝛼 + 1
𝐴(𝑡)𝛺(𝑡)𝑠𝑎(1, 𝛼, 𝜓(𝑡)) −

2

𝛼 + 1
𝐴(𝑡)�̇�(𝑡)𝑠𝑎(1, 𝛼, 𝜓(𝑡)) (21) 

Comparing Eq(19)2 and Eq(21) the constraint follows  

�̇�𝑐𝑎 −
2

𝛼 + 1
𝐴�̇�𝑠𝑎 = 0 (22) 

where for simplification ca = ca(α,1,Ωt), sa = sa(1,α,Ωt), A = A(t), Ω = Ω(t), θ = θ(t). The time derivative of 

Eq(19)2 is  

�̈� = −
2

𝛼 + 1
�̇�𝛺𝑠𝑎 −

2

𝛼 + 1
𝐴�̇�𝑠𝑎 −

2

𝛼 + 1
𝐴𝛺�̇�𝑐𝑎𝛼 −

2

𝛼 + 1
𝐴𝛺2𝑐𝑎𝛼 (23) 

Substituting (19) and (23) into (18) we obtain 

−
2

𝛼 + 1
(�̇�𝛺 + 𝐴�̇�)𝑠𝑎 −

2

𝛼 + 1
𝐴𝛺�̇�𝑐𝑎𝛼 = 𝜀𝑏1

2

𝛼 + 1
𝐴𝛺𝑠𝑎 (24) 

Using the derivative of Eq(4) 

−2�̇�𝐴 + (𝛼 − 1)𝛺�̇� = 0 (25) 

the Eq(24) transforms into 

�̇�𝛺𝑠𝑎 −
2

𝛼 + 1
𝐴𝛺�̇�𝑐𝑎𝛼 = 𝜀𝑏1

2

𝛼 + 1
𝐴𝛺𝑠𝑎 (26) 

Relations Eq(22) and Eq(26) correspond to Eq(18) and are the two first order differential equations of motion 

in new variables A and θ. After some modification we have 

�̇�𝛺 = −𝜀𝑏1

2

𝛼 + 1
𝐴𝛺𝑠𝑎2 ,       

2

𝛼 + 1
𝐴𝛺�̇� = −𝜀𝑏1

2

𝛼 + 1
𝐴𝛺𝑠𝑎𝑐𝑎    (27) 

To find the exact solution of Eq(27) is impossible. The averaging of Eq(27) over the period of vibration 

𝑇 =
2𝛱

𝛺
  =

2𝐵(
1

𝛼 + 1
,
1
2

)

𝛺
 

(28) 

Is suggested. Averaged functions are 

〈𝑠𝑎2〉 =
1

𝑇
∫ 𝑠𝑎2 𝑑𝑡

𝑇

0

=
𝛼 + 1

𝛼 + 3
,       〈𝑠𝑎 𝑐𝑎〉 =

1

𝑇
∫ 𝑠𝑎 𝑐𝑎 𝑑𝑡

𝑇

0

=  0   (29) 

and averaged differential equations are 

�̇� = −𝜀𝑏1

2

𝛼 + 3
𝐴,       �̇� = 0    (30) 

Integrating Eq(30) and using the steady state amplitude the motion of the oscillator is 

𝑥 = 𝐴𝑒𝑥𝑝 (−𝜀𝑏1

2𝑡

𝛼 + 3
) 𝑐𝑎(𝛼, 1, 𝛺𝑡),    (31) 

i.e. after substituting (10)1 
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𝑥 = (
2

𝛼 + 1

Ω2

𝑐𝛼
)

1
𝛼−1

𝑒𝑥𝑝 (−
2𝜀𝑏1𝑡

𝛼 + 3
) 𝑐𝑎(𝛼, 1, 𝛺𝑡)   (32) 

where b satisfies the relation Eq(10)2. Analysing the relation Eq(32) it is concluded that the additional damping 

term εb1 causes the vibration to decrease. The velocity of the amplitude variation depends on the order of 

nonlinearity: the higher is the order of nonlinearity the amplitude decrease is slower than for the linear case. If 

the nonlinearity is sufficiently large, the amplitude decrease is negligible: the small damping variation has no 

influence on the steady state motion of the oscillator. In Figure 5 the numerically obtained solution of Eq(18) is 

compared with analytically obtained one Eq(32). 

 

 
Figure 5: x-t diagrams obtained: analytically (red line) and numerically (dotted black line) 

 

It can be concluded that the analytically obtained solution is on the top of the numerical one. The difference 

between solutions is negligible for small perturbation parameter εb1 and short time interval. 

7. Conclusions 

The paper is the pioneering investigation in mathematical formulation of the cleaning of tube-deposit system of 

a boiler caused by vibration. The vibrating tube-slag system is assumed as a one degree of freedom oscillator 

where the external periodical excitation force acts. Due to nonlinear properties of the system the mathematical 

model is a second order differential equation with the nonlinearity is of any order (integer or non-integer). The 

excitation is described with a periodical Ateb function. For the system the nonlinear resonant vibration is 

determined. An analytical procedure is developed for computing of the exact steady states of the oscillator. 

For the certain relation between the adhesion force in the tube-deposit system and the restitution force the 

amplitude of vibration is obtained. Varying the parameters of the excitation function the oscillator changes its 

steady states. During this process the energy dissipation occurs. In the paper the energy dissipation rate is 

introduced. Based on the values of this rate the sensitivity of the system on the variation of the excitation 

parameters is analysed. It is concluded that the oscillators with small order of nonlinearity are less sensitive on 

frequency of excitation change and the steady state motion remains almost with the same amplitude. 

The perturbation of the vibration of the tube-deposit system occurs if the damping property of the deposit layer 

varies. In the paper approximate solution of the perturbed equation is obtained. Analytically obtained results 

are compared with numerical ones and are in good agreement. It is concluded that due to damping variation a 

transient motion to a new steady state motion occurs. The higher the order of nonlinearity of the system, the 

elimination of the perturbation due to variation of the damping coefficient is faster. 
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