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This paper focuses on the modelling and optimisation of the removal of chlorophenol from wastewater using 

multifactorial analysis. The development of the corresponding mathematical model is based on a specific set of 

experimental data of chlorophenol removal from wastewater derived from the literature. An analysis of variance 

(ANOVA) is used to investigate the most important independent variables and their interaction(s), which affect 

process performance. This in turn is used to develop two empirical model correlations for the rejection of 

chlorophenol and recovery rate using the multiple linear regression technique. The linear coefficients of the 

model correlations are estimated using the statistical software SPSS. The predictions of the model developed 

are compared to observed data and show high confidence level of R². Finally, the optimised control variables, 

which achieved both optimal rejection and recovery rate were explored further based on the upper and lower 

limits of the associated independent variables.   

1. Introduction 

Reverse Osmosis (RO) process has been proved in several studies to offer an effective and economic method 

for destroying unwanted organic compounds in wastewater including more particularly phenolic compounds 

(Reverberi et al., 2014). Several analytical models developed based on the principles of solution diffusion model 

have been successfully used to predict the removal of chlorophenol from wastewater using spiral wound RO 

process (Al-Obaidi and Mujtaba, 2016). Similarly, other advanced techniques have been used successfully to 

model and investigate the interactions of the independent variables on the performance of the RO process in 

respect of rejection and recovery rate. They include the use of Artificial Neural Network (ANN), Response 

Surface Method (RSM) and Factorial Design (FD) (Khayet et al., 2011). To the best of authors’ knowledge, no 

modelling and optimisation method for the removal of phenolic compounds from wastewater using statistical 

analysis has yet been explored.  

This research centres on the development of a statistical-based model for the removal of chlorophenol from 

wastewater in a spiral wound RO process. A multifactorial design methodology including analysis of variance 

(ANOVA) is used to investigate the interaction of the independent variables; i.e. feed concentration, pressure, 

temperature, and flow rate on the dependent variables; i.e. chlorophenol rejection and recovery rate using the 

experimental data of Sundaramoorthy et al. (2011). Multifactorial design has been selected because it facilitates 

the identification of the main factors, which have high impact on process performance using an optimised 

number of designed experiments. It will also yield an empirical model based on a second-grade quadratic 

equation. The consistency of which will be determined dependent on the R2 value between model prediction 

results and experimental data of the removal of chlorophenol from wastewater. Finally, the optimisation of the 

model is realised using the desirability function available in the statistical software SPSS. 

2. Review of the Experimental Work of Sundaramoorthy et al. (2011) and Data Generation 

A pilot-scale cross-flow RO filtration system of a spiral wound RO process has been used by Sundaramoorthy 

et al. (2011) to remove chlorophenol from wastewater. The characteristic of the membrane used, and the 

transport parameters of water and chlorophenol are given in Table 1. The operating conditions used are: 
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2.166x10-4–2.583x10-4 m³/s, 0.778x10-3–6.226x10-3 kmol/m³, 5.83–13.58 atm and 29.5–32.5 °C of feed flow 

rate, concentration, pressure, and temperature respectively. This set of data represents a reasonable range of 

pressure and concentration. However, the feed flow rate and temperature limit investigated was insignificant. 

This paper explores further this limitation by analysing extended limits of these variables and investigate their 

impact(s) on the process rejection and recovery rate. This is carried out by compiling a new set of data based 

on the experimental data of Sundaramoorthy et al. (2011). Sundaramoorthy et al. (2011) have developed a 

model that has been validated against the experimental data of chlorophenol and represents a high degree of 

consistency. This same model has been coded in the gPROMS software suite and used to solve a wide range 

of operating parameters. This also confirmed the ability of this model to predict process performance. The same 

code has now been used to generate new data for the extended limits of feed flow rate and temperature. The 

model has been extended to include two new equations to investigate the impact of operating temperature on 

the transport water 𝐴𝑤(𝑇) (m/s atm) and chlorophenol 𝐵𝑠(𝑇) (m/s) parameters as shown in Eq(1) and Eq(2). 

𝐴𝑤(𝑇) =  𝐴𝑤(𝑇𝑜)  
𝜇𝑏(𝑇𝑜)

𝜇𝑏(𝑇)

                                                                                                                                          (1) 

𝐵𝑠(𝑇) =  𝐵𝑠(𝑇𝑜)  
(𝑇+273.15)

(𝑇𝑜+273.15)
  

𝜇𝑏(𝑇𝑜)

𝜇𝑏(𝑇)

                                                                                                                           (2) 

𝐴𝑤(𝑇𝑜), 𝐵𝑠(𝑇𝑜) and 𝜇𝑏(𝑇𝑜) are the water and chlorophenol transport parameters and viscosity (kg/m s) at reference 

temperature respectively. The reference temperature is taken as 31 °C due to generating the transport 

parameters at such temperature (Sundaramoorthy et al., 2011). While the new selected range of feed flow rate 

and temperature (lower and upper) are 1.5x10-4–2.7x10-4 m³/s and 25–40 °C respectively. Note that the selected 

limits are within the membrane manufacturer specification. Moreover, this study keeps the same operating 

conditions of pressure and concentration used by Sundaramoorthy et al. (2011).  

Table 1: Membrane specifications (Ion Exchange, India Ltd) 

Parameter Unit Value 

Length (𝐿), width (𝑊) and area (𝐴) (m) (m2) 0.934, 8.4 and 7.9 

Feed (𝑡𝑓) and permeate (𝑡𝑝) channel thickness  (mm) 0.8 and 0.5 

Water and chlorophenol transport parameters (𝐴𝑤) and (𝐵𝑠) (
m

atm s
) (

m

s
) 9.5188x10-7 and 8.468x10 -8    

3. Application of the Factorial Design Method  

Here, the methodology of Factorial Design Method (FDM) is used to quantify the interaction effects between the 

independent variables including concentration 𝐶𝑓 (kmol/m³), flow rate 𝑄𝑓 (m³/s), pressure 𝑃𝑓 (atm), and 

temperature 𝑇 (°C) with the chlorophenol rejection 𝑅𝑒𝑗 (-) and recovery rate 𝑅𝑒𝑐 (-). The proposed first order 

linear regression model of chlorophenol rejection and recovery rate for two-way levels main interactions of four 

independent variables (factors) factorial design is given in the counter of Eq(3) and Eq(4). 

𝑅𝑒𝑗 = 𝐴0 + 𝐴1𝑄𝑓 + 𝐴2𝐶𝑓 + 𝐴3𝑃𝑓 + 𝐴4𝑇 + 𝐴12𝑄𝑓𝐶𝑓 + 𝐴13𝑄𝑓𝑃𝑓 + 𝐴14𝑄𝑓𝑇 + 𝐴23𝐶𝑓𝑃𝑓 + 𝐴24𝐶𝑓𝑇 + 𝐴34𝑃𝑓𝑇            (3) 

𝑅𝑒𝑐 = 𝐵0 + 𝐵1𝑄𝑓 + 𝐵2𝐶𝑓 + 𝐵3𝑃𝑓 + 𝐵4𝑇 + 𝐵12𝑄𝑓𝐶𝑓 + 𝐵13𝑄𝑓𝑃𝑓 + 𝐵14𝑄𝑓𝑇 + 𝐵23𝐶𝑓𝑃𝑓 + 𝐵24𝐶𝑓𝑇 + 𝐵34𝑃𝑓𝑇             (4) 

𝐴0, 𝐵0  are the coefficients representing the mean of responses of all the simulation runs. 𝐴1 to 𝐴4 and 𝐵1 to 𝐵4 

are the linear coefficient representing the effect of each parameter on rejection and recovery rate respectively. 

𝐴12 to 𝐴34 and 𝐵12 to 𝐵34 are the linear coefficient representing the effect of two interactions of operating 

parameters in rejection and recovery rate respectively. the statistical package SPSS has been used to generate 

the linear regression model by predicting the constants of the empirical model presented in the above two 

equations. This in turn generates a linear model using the least square technique as described in the next 

section. SPSS is used later on to analyse the experimental data using ANOVA (analysis of variance).  

3.1 Model Development and Consistency  

The linear regression model developed provided by SPSS is illustrated in Eq(5) and Eq(6) based on the 

experimental data used. 

𝑅𝑒𝑗 = −0.689 + 1550.404 𝑄𝑓 + 108.582 𝐶𝑓 + 0.003 𝑃𝑓 + 0.037 𝑇 − 50062.36 𝑄𝑓𝐶𝑓 + 13.065 𝑄𝑓𝑃𝑓 − 38.2 𝑄𝑓𝑇 +

             0.104 𝐶𝑓𝑃𝑓 − 2.268 𝐶𝑓𝑇 + 6.013𝑥10−5 𝑃𝑓𝑇                                                                                               (5) 
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𝑅𝑒𝑐 = −26.613 + 169037.141 𝑄𝑓 − 2681.945 𝐶𝑓 + 2.862 𝑃𝑓 + 0.652 𝑇 + 5699869.565 𝑄𝑓𝐶𝑓 − 15667.483 𝑄𝑓𝑃𝑓 −

             5026.5 𝑄𝑓𝑇 − 102.562 𝐶𝑓𝑃𝑓 + 39.383 𝐶𝑓𝑇 + 0.122 𝑃𝑓𝑇                                                                (6)                                                

The model developed is validated against the expanded set of experimental data of Sundaramoorthy et al. 

(2011). The validation methodology is based on finding the coefficient of determination (R2) which is used to 

measure the adequacy of the model developed. Figure 1 shows the normal P-P plot of chlorophenol rejection 

and recovery rate. It can readily be seen that the residual data lies reasonably close and best fit to the line 

across the bisection of the graph. Therefore, this figure shows no big deviation from normality I.e. the empirical 

data are normally distributed. The simple comparison between the model prediction and experimental data 

shows a high coefficient of determination (R2) of 0.941 and 0.99 for chlorophenol rejection and recovery rate 

respectively at probability value less than 0.05. This confirms the agreement between the model prediction and 

experimental data. Table 2 shows summary model results for chlorophenol rejection and recovery rate. 

 

 

Figure 1: Normal P-P of regression standardised residual dependent of rejection (A) and recovery rate (B)  

Table 2: Model summary of chlorophenol rejection b 

Model R 
R  

Square 

Adjusted 

R Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

𝑅𝑒𝑗 .970 a .941 .938 .0318 .941 326.643 10 205 .000 

𝑅𝑒𝑐 .995 a .990 .990 1.3020 .990 2052.808 10 197 .000 
a Predictors: (Constant), 𝑄𝑓, 𝑃𝑓, 𝐶𝑓, 𝑇, 𝑃𝑓 − 𝑇, 𝐶𝑓 − 𝑇, 𝐶𝑓 − 𝑃𝑓 , 𝑄𝑓 − 𝑃𝑓, 𝑄𝑓 − 𝐶𝑓, 𝑄𝑓 − 𝑇 

4. Analysis of variance (ANOVA) 

The experimental data of Sundaramoorthy et al. (2011) were further used to perform an analysis of variance 

ANOVA which in turn aids to optimise the process performance. Figure 2 shows a symmetrical pins-shaped 

histogram of the frequency distribution of errors from experimental data. This means that the proposed model 

can describe the pattern of experimental data due to randomly distributed residuals. Table 3 can be used to 

assess if the model proposed is statistically significant to predict the outcome pattern of this process. It is easy 

to see that the p value is less than 5%, which indicates that the model can accurately predict the chlorophenol 

rejection. Moreover, the F-Statistic available in SPSS to compare variances confirms the significance of the 

model evidenced by the large value of F-Statistics shown in Table 3. Tables 4 and 5 show the impact of each 

independent and two-factor interaction variables on chlorophenol rejection and recovery rate respectively. It can 

be observed that the temperature has the most significant impact on chlorophenol rejection followed by 

concentration, pressure, and flow rate. However, the pressure has the most significant impact on recovery rate 

followed by flow rate, temperature, and concentration. The impact of two-factor interaction on chlorophenol 

rejection and recovery rate is given in Tables 4 and 5 respectively. Specifically, all the independent variables 

have positive impact on chlorophenol rejection, as shown in Table 4. Whereas, Table 5 shows that only pressure 

and temperature have a positive impact on recovery rate compared to concentration and flow rate. Note that 

these results have shown that almost all the independent variables and the two-factor interaction independent 

variables are statistically significant (5% i.e. p<0.05). This confirms that the model is statistically significant.  

R2=0.99 R2=0.941 

A B 
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Figure 2: The histogram of distribution of errors from the experimental data of chlorophenol rejection  

Table 3: ANOVA analysis of chlorophenol rejection 𝑅𝑒𝑗  

Model Sum of Squares Df a Mean Square F Sig. 

Regression 3.315 10 .331 326.643 .000 b 

Residual .208 205 .001   

Total 3.523 215    
a Degree of freedom; b Predictors: 𝑄𝑓, 𝑃𝑓, 𝐶𝑓, 𝑇, 𝑃𝑓 − 𝑇, 𝐶𝑓 − 𝑇, 𝐶𝑓 − 𝑃𝑓, 𝑄𝑓 − 𝑃𝑓, 𝑄𝑓 − 𝐶𝑓, 𝑄𝑓 − 𝑇 

Table 4: Correlations of chlorophenol rejection 𝑅𝑒𝑗 

 𝑅𝑒𝑗 𝐶𝑓 𝑃𝑓 𝑇 Qf Qf_Cf Qf_Pf Qf_T Cf_Pf Cf_T Pf_T 

Pearson correlation 𝑅𝑒𝑗 1.000 .376 .206 .841 .015 .350 .175 .460 .405 .516 .546 

𝐶𝑓 .376 1.00 .015 -.016 .002 .930 .014 -.006 .884 .966 .003 

𝑃𝑓f .206 .015 1.00 .023 -.008 .012 .782 .007 .400 .016 .891 

𝑇 .841 -.016 .023 1.00 -.079 -.037 -.028 .475 -.011 .199 .455 

𝑄𝑓 .015 .002 -.008 -.079 1.00 .307 .594 .829 .000 -.013 -.040 

Qf_Cf .350 .930 .012 -.037 .307 1.00 .195 .248 .821 .891 -.008 

Qf_Pf .175 .014 .782 -.028 .594 .195 1.00 .504 .316 .005 .675 

Qf_T .460 -.006 .007 .475 .829 .248 .504 1.00 -.005 .098 .213 

Cf_Pf .405 .884 .400 -.011 .000 .821 .316 -.005 1.000 .853 .344 

Cf_T .516 .966 .016 .199 -.013 .891 .005 .098 .853 1.00 .098 

Pf_T .546 .003 .891 .455 -.040 -.008 .675 .213 .344 .098 1.00 

Sig. (1-tailed) 𝑅𝑒𝑗 . .000 .001 .000 .413 .000 .005 .000 .000 .000 .000 

Table 5: Correlations of recovery rate 𝑅𝑒𝑐 

 𝑅𝑒𝑐 𝐶𝑓 𝑃𝑓 𝑇 𝑄𝑓 Qf_Cf Qf_Pf Qf_T Cf_Pf Cf_T Pf_T 

Pearson correlation 𝑅𝑒𝑐 1.00 -.177 .685 .383 -.558 -.324 .161 -.289 .086 -.087 .795 

𝐶𝑓 -.177 1.00 .005 .003 -.007 .930 -.001 -.002 .888 .966 .005 

𝑃𝑓f .685 .005 1.00 .010 -.003 .003 .775 .003 .378 .006 .880 

𝑇 .383 .003 .010 1.00 -.081 -.019 -.042 .481 .006 .214 .463 

𝑄𝑓 -.558 -.007 -.003 -.081 1.00 .297 .606 .824 -.007 -.022 -.039 

Qf_Cf -.324 .930 .003 -.019 .297 1.00 .183 .249 .826 .892 -.006 

Qf_Pf .161 -.001 .775 -.042 .606 .183 1.00 .504 .289 -.008 .657 

Qf_T -.289 -.002 .003 .481 .824 .249 .504 1.00 -.001 .101 .221 

Cf_Pf .086 .888 .378 .006 -.007 .826 .289 -.001 1.00 .859 .334 

Cf_T -.087 .966 .006 .214 -.022 .892 -.008 .101 .859 1.00 .103 

Pf_T .795 .005 .880 .463 -.039 -.006 .657 .221 .334 .103 1.00 

Sig. (1-tailed) 𝑅𝑒𝑐 . .005 .000 .000 .000 .000 .010 .000 .108 .106 .000 
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5. Design of full factorial experiments 

The estimation of the relative strength of independent variables is carried out using the design of full factorial 

experiments test. This in turn would explore the factors’ effects independently and more precisely on 

chlorophenol rejection and recovery rate. In this study, the 2-level factorial experiments design involving n 

factors that has 2n runs is used. The idea is to calculate the subtraction of mean response at high level (+ sign) 

and mean response at low level (- sign), which identifies the main effect of that factor. Moreover, the interaction 

between two factors at all combinations can be explored using the same principles. Table 6 shows the design 

of a balanced array of full factorial experiments of four independent variables. 

Figure 3 is the Pareto bar chart that shows the relative main effects of each individual and interacted variable 

on chlorophenol rejection and recovery rate respectively within the selected lower and upper limits of each 

variable. It is observed that the temperature has a considerable effect on rejection compared to pressure for 

recovery rate. The mean response, which has the most significant change for the selected limits of any 

independent variable confirms that this variable has the strongest impact on that response. Therefore, it can be 

said that the temperature has the most important positive impact on rejection followed by concentration, 

pressure, and flow rate. Whereas, the consequence of recovery rate is pressure, feed flow rate, temperature, 

and concentration despite the negative impact of flow rate and concentration. Moreover, Figure 3 shows the 

two-way interaction impact of independent variables on all such combinations. This means that the effect of 

each factor is dependent on the level of the combined factor. It is obvious that 𝐶𝑓𝑇 has a significant positive 

impact on rejection followed by 𝑃𝑓𝑇. However, 𝐶𝑓𝑇 has the strongest impact on recovery.  

Table 6: Design a balanced array of full factorial experiments test 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Main effect plot of independent variables on rejection (A) and recovery rate (B) 

Run A0 A1 (𝑄𝑓) A2 (𝐶𝑓) A3 (𝑃𝑓) A4 (𝑇) Exp.  𝑅𝑒𝑗 Exp.  𝑅𝑒𝑐  

1 1 -1 -1 -1 -1 0.3573 16.237 

2 1 +1 +1 +1 +1 0.9390 33.522 

3 1 +1 -1 -1 -1 0.4179 8.130 

4 1 -1 +1 -1 -1 0.5936 10.588 

5 1 -1 -1 +1 -1 0.3122 44.941 

6 1 -1 -1 -1 +1 0.8128 24.436 

7 1 +1 +1 +1 -1 0.6970 17.535 

8 1 +1 +1 -1 +1 0.8738 10.180 

9 1 +1 -1 +1 +1 0.8886 37.416 

10 1 -1 +1 +1 +1 0.9374 58.435 

11 1 +1 +1 -1 -1 0.6347 5.523 

12 1 +1 -1 +1 -1 0.3844 24.527 

13 1 -1 +1 -1 +1 0.8755 20.273 

14 1 -1 -1 +1 +1 0.8817 68.238 

15 1 -1 +1 +1 -1 0.6578 30.170 

16 1 +1 -1 -1 +1 0.8200 12.138 

A 

B 
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6. Optimisation of chlorophenol rejection and recovery rate  

The aim of this part of the research is to investigate which independent variables can generate the maximum 

chlorophenol rejection and recovery rate simultaneously. The desirability function is therefore used to optimise 

the independent variables within their upper and lower limits to satisfy the maximum values of rejection and 

recovery rate. This is carried out using the design of experiments shown in section 5. The optimisation output 

results are given in Figure 4. It is concluded that the optimum independent variables are 1.5x10-4 m³/s,  

0.778x10-3, 13.58 atm, and 40 °C. This yields the maximum 0.865 and 67.4% of chlorophenol rejection and 

recovery rate respectively at the maximum desirability function of 0.88 and 0.98 respectively. The solution of 

chlorophenol rejection can be improved by selecting an individual optimisation response compared to 

simultaneous optimisation responses.  

 

 

Figure 4: Optimisation results 

7. Conclusions 

This paper shows the development of a full factorial predictive model to estimate the removal of chlorophenol 

from wastewater and recovery rate (response) of an individual spiral wound RO process based on experimental 

data and using the least squares fitting regression method in SPSS. The results clearly suggest a significant 

linear strong regression correlation between the independent variables and the rejection and recovery rate with 

a high determination coefficient of 0.941 and 0.99 respectively. The model can investigate the response within 

the limits of four independent variables of feed flow rate (1.5x10-4–2.7x10-4 m³/s), concentration (7.78x10-4–

6.226x10-3 kmol/m³), pressure (5.83–13.58 atm), and temperature (25–40 °C). The method of design of 

experiment is used to investigate the effect of individual and two-way interactions of four independent variables 

on the process response. Analysis results indicate that both the temperature and pressure have the most 

important effect on rejection and recovery rate. Finally, the optimisation results confirm the desirable values of 

the independent variables commensurate with the simultaneous optimal rejection and recovery rate.  
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