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Upflow anaerobic sludge blanket (UASB) reactors are often used for wastewater treatment and microalgae 

production. UASB have a greater performance due to higher biomass concentrations. However, this comes at 

the cost of increased nonlinearities and therefore increased difficulties of control through linear methods 

(especially ones that make use of simplified models of the system). The methods developed to counter this type 

of problems include feedback linearization, which uses additional information on the system to create 

performance advantages. This paper performs a comparative study of both types of controllers applied to a 

UASB, first in their equilibrium points and their stability, secondly in the different stable regions (basins of 

attraction) of these points in the parameter space, and thirdly in the effects of identification uncertainty on over 

these regions. It is found that the two control loops have similar equilibrium points qualitatively and quantitatively. 

The kinetics of substrate inhibition limit the values of controller set point in the linear loop, and the uncertainty 

of identification gain has greater importance to that of the time constant. 

1. Introduction 

Biological processes are nonlinear (Zhai et al., 2017), especially in their kinetics (Lara-Cisneros et al., 2014), 

which is a challenge for linear control schemes (Garpinger et al., 2014). An example of this is the UASB type 

reactor, characterized by high biomass concentrations and a lot of parameters, representing an inconvenience 

to controller design (Nair and Ahammed, 2015). Many techniques are used to control bioreactors; they can be 

divided into linear and nonlinear methods. Linear methods usually use linear approximations, with their 

performance depending on the system complexity (El-Bardini and El-Nagar, 2014), while the nonlinear methods 

use additional information to create performance advantages (Hahn et al., 2004). 

The PID control law (Proportional Derivative Integrative) is the most popular linear (Prasad et al., 2014). It has 

three adjustable parameters, usually determined by defined tuning methods, like the IMC-PID algorithm (JIN et 

al., 2013), this reduces the degrees of freedom of the PID to one parameter lambda (𝜆), being correlated to 

stabilization time (Bequette, 2003). An important nonlinear control method is Feedback linearization. This control 

law seeks to simplify systems by canceling nonlinearities (Lei and Khalil, 2016), the robustness has been studied 

by the use of bifurcation analysis to find the limitations of tuning and how these change with uncertainty (Hahn 

et al., 2008). 

The main contribution of this paper is to do a comparative performance study of a linear PID tuned by an IMC-

PID tuning rule and a feedback linearization controller coupled to a PID tuned by an IMC-PID tuning rule both 

applied to a bioreactor, by using bifurcation analysis to find and compare their stability regions of the closed 

loops in the process parameter space, using the stability regions of each controller to possibly derive truths 

about biological kinetics, PID control and IMC tuning, and how these relate to each other.  

Explorations of the stability zone of a closed loop system under PID control and feedback linearization have 

been done before, especially in simple systems (Chang and Chen, 1984). Parametric stability zones are found 

and used for purposes like smarter tuning (Hahn et al., 2008), robustness analysis (Hahn et al., 2004), controller 

design (Zhusubaliyev et al., 2015), and fuzzy logic controller design (Galluzzo et al., 2008). These are often 

purely analytical studies and no deeper connection to phenomenological causes is found, this paper seeks to 

contribute in the deeper phenomenological understanding. 
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2. The process 

The study case is a UASB type reactor, with a wastewater inlet (with a dilution rate D), containing volatile fatty 

acids (VFAs) (𝑆2), and several chemical compounds which concentration is measured indirectly using Chemical 

Oxygen Demand (COD) (𝑆1). The bacteria inside the UASB (represented as 𝑋1 and 𝑋2) degrade the VFAs and 

the other chemical compounds reducing the COD, by Monod and Haldane kinetic expression respectively, 

producing 𝐶𝑂2 and 𝐶𝐻4, under the reactions 𝑘1𝑆1 ⟹ 𝑋1 + 𝑘4𝐶𝑂2 + 𝑘2𝑆2, and  𝑘3𝑆2 ⟹ 𝑋2 + 𝑘6𝐶𝐻4 + 𝑘5𝐶𝑂2 

(Bernard et al. 2001). The process model is presented in Eq(1). 
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Where:  

μ1 = μmax1
S1

KS1+S1
 μ2 = μ0

S2

KS2+S2+(
S2
KI

)
2 (2) 

And its parameters are listed in Table 1. 

Table 1: Model parameters 

Parameter Value Parameter Value Parameter Value Parameter Value 

𝐷 (days−1) 0.36 k2 (
mmolAGV

gX1
) 28.60 k1(

gDQO

gX1
) 10.53 S1

in (
g

L
) 5.8 

μ0 (days−1) 0.74 Ks2 (
mmolAGV

L
) 9.28 μmax1 (days−1) 1.20 α 0.5 

Ks1 (
gDQO

𝑙
) 7.10 KI (

mmolAGV

L
) 16 S2

in (
mmol

L
) 52 k3 (

mmolAGV

gX2
) 1,074 

3. Controller design  

3.1 Linear control by IMC-PID 

An ideal PID has the form of Eq(3), where 𝐾𝑐, 𝜏𝑖, and 𝜏𝑑 are the controller parameters, 𝑢 is the input, 𝑦 the 

output, and subscripts 𝑠𝑠 and 𝑠𝑝 are stationary state and set point respectively. 

u − uss = Kc(1 + (1 τi)s⁄ + τds)(ysp − y) (3) 

Using an approximate model 𝐺�̃�(𝑠), then factorizing it into its invertible and non-invertible parts 𝐺𝑝
− , 𝐺𝑝

+ 

respectively, the IMC-PID method gives the tuning Eq(4) for Eq(3)  (Bequette, 2003). 

PID(s) = Gp
−(s)−1f(λ, s) (1 − Gp̃(s)Gp

−(s)−1f(λ, s)⁄ ) (Klemeš et al., 2017) (4) 

Using a linear first-degree transfer function as 𝐺�̃�(𝑠) to approximate the response of Eq(1) and applying the 

tuning Eq(4), produces the tuning parameters that can be seen in Eq(5). Where 𝐼𝑘 and 𝐼𝜏 are fractional 

identification uncertainties in the gain and temporal parameter. 

Kp = 0.029(1 + Iτ) λ(1 + Ik)⁄   and   ti = 0.33102(1 + Iτ) (5) 

3.2 Input-output Linearization  

This method determines an input 𝑢 such that the output 𝑦(𝑟) = 𝑣, 𝑟 being the minimum integer such that 𝑦(𝑟) 

contains 𝑢 explicitly. The linearized system is then controlled with a IMC-PID using 𝑣 as a new input. The 

linearizing function can be found by applying  Eq(6) - Eq(8) to the system (Isidori, 2013) 

u = (υ − Lf
rh(x)) (LgLf

r−1h(x))⁄  (6) 

u = (υ − Lf
rh(x)) (LgLf

r−1h(x))⁄  (7) 

Lfh(x) = ∑ fi(x) ∂y ∂xi⁄n
i=1 , Lf(x)

2 h(x) = Lf(x)Lf(x)h(x) (8) 
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When the controlled variable is chosen to be 𝑆2, the input-output linearization of the study case is Eq(9), and 

the PID controller used to manipulate 𝑣 is given by Eq(10) 

Dl = −(v– k2u1x1 + k3u2x2) (s2 − s2
in)⁄  (9) 

v = (sp − S2) λ⁄  (10) 

4. Parametric uncertainty and bifurcation analysis  

Small values of 𝐼𝑘 and 𝐼𝜏 make a better control, the same happens with a correct choosing of 𝜆 to create an 

adequate response, it’s clear that knowing the relation of loop parameters to system properties is vital. An 

accepted approach to explore the parametric space is the bifurcation analysis (Kuznet︠ s︡ov, 2013). In simple 

terms, the bifurcation analysis of a dynamical system is the search for qualitative response changes (by 

monitoring the linearized system’s eigenvalues) as the systems parameters are varied smoothly. Codimension 

two bifurcation analysis is used to map the stability behavior of the equilibrium points (steady states) of the 

closed loop UASB reactor as its control parameters are varied with the aim to assess its qualitative behavior 

and robustness, such equilibrium points are seen in Table 1 with 𝑠𝑝 = 2.99 and 𝜆 = 0.1, where 𝛽 and 𝛾 are real 

parameters: 

Table 2: Equilibrium points controller loops (a) linear control (b) feedback linearization 

(a)  1st 2nd 3rd 4th (b) 1st 2nd 3rd 4th 5th 

 X1 (
g

L
) 0.86 0 0 −3.42  0.86 𝛽 0 −3.42 0 

 X2 (
g

L
) 0.11 0 0.09 0  0.11 0 0.09 0 0 

 S1 (
g

L
) 1.25 0 5.8 23.84  1.25 0 5.8 23.84 𝛾 

 S2 (
mmol

L
) 2.99 2.99 2.99 2.99  2.99 2.99 2.99 2.99 2.99 

4.1 Bifurcation surfaces of the linear control loop  

The stability regions for each equilibrium point of the control loop in the parameter space are important to the 

design; these regions are separated from the unstable regions by a codimension two bifurcation. For the UASB 

reactor under IMC-PID, only the first and fourth equilibrium points have a  codimension two bifurcation. 

Figures 1 and 2 show the stable zones of the equilibrium points. In the case of the Figures 1(a) and 1(b), this 

zone is under the presented surface and in 2(a) and (b), is the side facing the origin limited in 𝑠𝑝 by plane on 

top, and in its 𝜆 by a surface. 

It is important for the controller design to select parameters inside the stable zones in Figures 1(a) and 1(b), 

while choosing parameters outside the same zone in 2(a) and 2(b), given that it’s an undesirable stable 

equilibrium point, from this it can be deduced that for this UASB reactor there is a superior limit in its 𝑠𝑝, and an 

inferior one in 𝜆. 

 

 

Figure 1: Bifurcation manifolds of IMC-PID controller loop, where (a) and (b) are the bifurcation surface of the 

first equilibrium point on the [𝜆 𝑠𝑝 𝐼𝑘] space at 𝐼𝜏 = 0 and [𝜆 𝑠𝑝 𝐼𝜏] at 𝐼𝑘 = 0 respectively 
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Figure 2: Bifurcation manifolds of IMC-PID controller loop, where (a) and (b) are the bifurcation surface of the 

first equilibrium point on the [𝜆 𝑠𝑝 𝐼𝑘] space at 𝐼𝜏 = 0 and [𝜆 𝑠𝑝 𝐼𝜏] at 𝐼𝑘 = 0 for the fourth equilibrium points 

respectively 

As the value of VFA at the input current is 52, the bifurcation surfaces in (a) and (b) tend to the input value of 

VFA as 𝜆 tend to zero, from this its deduced that the superior limit to 𝑠𝑝 ought to be around 0.9𝑆𝑠
𝑖𝑛, while the 

inferior limit to 𝜆 is highly dependent on the uncertainty parameters. 

For values of parameters in the surfaces (a) and (b), or values above them, a reactor washout is reached. The 

bifurcation surface is then shaped by the kinetics of substrate inhibition, in this case the set point (𝑠𝑝) in the 

surface is lower at higher 𝜆, because a higher 𝜆 precludes a slower response and therefore a greater inhibition, 

and with it a lower flow necessary to washout the microorganisms, flow that is reached at lower controller set 

point (𝑠𝑝). Fom this comes that  0.9𝑆𝑖𝑛 ought to be the recommended superior limit in any reactor with substrate 

inhibition. 

When the bifurcation surfaces intersect the planes defined by  𝐼𝑘 = 𝑛 or 𝐼𝜏 = 𝑛, the resulting 𝑅2 stable area is 

directly related to robustness. So, an increase between the stable area at a given uncertainty 𝐴(𝐼𝑘/𝐼𝜏) and the 

area without it 𝐴(0), is a sign that robustness is greater at 𝐼𝑘/𝐼𝜏. If the increase happens in the stability area of 

the desired equilibrium point, it is a sign of diminishing robustness in any other stationary state, this is shown in 

Figures 3 and 4, for the linear control loop. 

 

 

Figure 3: Changes in stability area with uncertainty. (a) 𝐴(𝐼𝑘) − 𝐴(0), 1st equilibrium point. (b) 𝐴(𝐼𝜏 ) − 𝐴(0), 1st 

equilibrium point. 
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Figure 4: Changes in stability area with uncertainty. (a) 𝐴(𝐼𝑘) − 𝐴(0), 4th equilibrium point. (b)𝐴(𝐼𝜏) − 𝐴(0), 4th 

equilibrium point 

As it can be seen in Figures 3 and 4. an increase in 𝐼𝑘 increases the stable area of the desired equilibrium point 

(1st), while decreasing that of the 4th and undesired point, then it comes that small increases in 𝐼𝑘 improve system 

robustness. In the case of 𝐼𝜏 both areas are increased; however, the magnitude of their increase is magnitudes 

lower than for 𝐼𝑘 

4.2 Bifurcation Surfaces of the Feedback Linearized Control Loop 

An Input-output linearization was done on the UASB reactor, making it so that 𝑆2 is linear with respect to an 

introduced input variable, which can be used to easily control 𝑆2 by a regular IMC-PID, the equilibrium points of 

this loop were found and are shown in Table 2(b), however they possess no bifurcation, meaning the operational 

state is always stable regardless of parameter values, even when the set point takes on concentrations that are 

physically impossible to reach, such as 𝑠𝑝 > 𝑆2
𝑖𝑛 

5. Phenomenological implications 

Both loop equilibrium points with the same assigned number have very similar values, which points to open loop 

causes for closed loop equilibrium points. This is the case with simple enough controllers, with the controllers 

only modifying the systems dynamics. In the case of IMC-PID and feedback linearization, both modify the 

equilibrium points of the open loop system in the same ways. 

In the case of the IMC-PID controlled system, its two stable equilibrium points are only stable in regions of the 

parameter space given by Figures 1 and 2. To have a stable loop its set point must be below the surface given 

in Figure 1 (a) and (b), and its controller time parameter must be above the surface in Figure 2 (a) and (b), while 

the 1st and 4th equilibrium points of the feedback linearized loop are stable regardless of parameters. 

In the present case controller setpoint increases beget inflow increases (The speed of increase depends on 

parameter λ of the loop) washing away biomass which in turn increases 𝑆2. If the sp increase enough, biomass 

will be washed out. However, the minimum sp of washout depends on the value of λ, because at slower flow 

responses the microbial reproduction is inhibited longer, and therefore a lesser flow is needed to cause a wash 

out, which means that at greater values of λ the setpoint value which causes a washout will diminish (see Figures 

3 and 4). This is the cause of the differences in the parameter spaces of corresponding equilibrium points in the 

IMC-PID controlled system. On the feedback linearized system, the same phenomenon does not occur because 

the controller responses are faster. 

The Figures 3 and 4 also draws another conclusion, a bigger 𝐼𝑘 increases the system robustness by increasing 

the stability area of the fourth equilibrium point, while 𝐼𝜏 with a smaller influence on robustness has mixed effects, 

on one hand, increases the stability area in the first equilibrium point, but on the other hand, it increases the 

area in the fourth point.  
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6. Conclusions 

The results show that open loop dynamics influence closed loop equilibrium points, in some cases a determining 

one, and that closed loops under feedback linearization and PID control can be very similar regarding their 

equilibrium points, and their stability. It was also seen that there is plausible phenomenological explanations for 

bifurcation surfaces, and that in the case of biological systems under PID control the microbial kinetics of 

substrate inhibition can be this explanation, moreover, the results seem to indicate that, at least for bioreactors 

with substrate inhibition kinetics, when using the concentration of substrate at the output as a controller variable, 

that keeping the set point (𝑠𝑝) below 90 % the concentration of that same substrate at the input, in the present 

case 𝑆2
𝑖𝑛, can be a good thumb rule to keep controller parameters below any possible bifurcation caused by the 

kinetics; it’s desirable to focus future research into this same phenomenon with other types of microbial kinetics, 

in order to develop similar heuristics for bioreactor operation. Lastly it was found that uncertainty in controller 

proportional constant has a bigger effect than uncertainty on controller time constant (𝐼𝜏), and that a good 

heuristic for controller operation is trying to keep 𝐼𝑘 positive, given that a negative 𝐼𝑘 has more harmful effects 

on control  
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