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The limitation of the fossil-resources has led the research to focus on the production of biomass-based fuels 

from lignocellulosic agricultural residues, as it is the case of the bio-ethanol. Due to the complex and 

heterogeneous structure of these residues, a delignification stage is usually necessary prior to a simultaneous 

saccharification and fermentation treatment (SSF) for the production of bio-ethanol. In a previous work, an 

alkaline delignification of hydrothermally pretreated vine shoots using conventional heating was carried out in 

order to obtain a solid residue with low lignin and hemicellulosic content, which could be further subjected to a 

SSF treatment. However, when this biorefinery scheme was evaluated by a Life Cycle Assessment it was 

observed that the energy and chemical requirements of the delignification stage needed to be reduced. 

Therefore, in this work the assistance of the alkaline delignification stage by microwave was studied. The 

treatments were carried out at different temperatures, in order to study its influence on the lignin removal. It was 

observed that the microwave assistance could permit the improvement of the delignification treatments not only 

by increasing the delignification yield but also by reducing the temperature, time and NaOH concentration used 

in the treatments. The strong influence of the temperature on the chemical composition, structure and 

crystallinity of the delignified solids was also appreciated during this study. The solid residues obtained under 

the most severe conditions of the microwave-assisted alkaline delignification treatment (125 ºC) could be a 

promising solid for the employment in a SSF treatment due to its low lignin and hemicellulosic content (16.68 % 

and 0.01 % respectively) and its high glucan content (50.75 %), although it presented a higher crystallinity index 

than the hydrothermally pretreated vine shoots. 

1. Introduction 

The production of biomass-based ethanol has increased throughout the years as the limitation of the 

employment of the fossil-fuel resources has directed the research towards this initiative. In 2014, 927.42 GL of 

bio-ethanol were produced worldwide, being around 60 % of it produced from sugarcane while the remaining 

40 % was obtained from other crops (Achinas and Euverink, 2016). Although the bio-ethanol seems to be an 

encouraging alternative for the gasoline used in the transportation sector, its production amount continues to be 

insufficient compared with the annually consumed quantity (Achinas and Euverink, 2016). This fact has driven 

the attention towards the production of bio-ethanol from unexploited lignocelullosic biomass, such as vine shoots 

for instance. 

The greenest and the most common procedure for the obtaining of bio-ethanol from this kind of residues consist 

on a simultaneous saccharification and fermentation (SSF). However, prior to the SSF the biomass needs to be 

pretreated, as it is necessary to disrupt the close inter-component association between the main constituents of 

the cell walls. It has been reported that the hemicellulosic fraction tend to block the access of the enzyme to the 

cellulose microfibrils (Zhang et al., 2012) while the lignin fraction apart from acting as a barrier it is also supposed 

to bind irreversibly by hydrophobic interactions to the cellulase, provoking a decrease of its activity (Hu et al., 

2013).  
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Therefore, the vine shoots, which are the raw material used in this work, were subjected to a hydrothermal 

treatment followed by a delignification stage. The conditions used during the hydrothermal treatment were 200ºC 

using a LSR of 8 Kg/Kg (oven-dried basis) in a non-isothermal regimen. It has been previously estimated that 

these were the optimum conditions for the maximum obtaining of oligosaccharides with the minimum formation 

of monosaccharides and it permitted the removal of 61.5 % of the hemicelluloses present in the vine shoots 

(Dávila et al., 2016). 

In this work, the attention was focused on the delignification stage of the hydrothermally pretreated vine shoots. 

There are not many examples in the literature of the delignification of this pretreated and untreated residue. 

However, it has been reported that the alkaline delignifications presented a higher delignification yield than the 

organosolv treatments (Dávila et al., 2017a). These researchers observed that during the alkali delignification 

carried out with conventional heating around 60 % of the lignin present in the untreated and pretreated vine 

shoots was removed, while during the organosolv treatments only 26 % and 12 % of the lignin was removed 

respectively. However, the alkaline delignification presented a high energy and chemical requirements as it was 

observed during the Life Cycle Assessment of the biorefinery approach of the vine shoots, which consisted in a 

hydrothermal treatment, followed by an alkaline delignification and a SSF (Gullón et al., 2018). Therefore, in this 

work the intensification of the alkaline delignification by the assistance of microwave was studied. The 

microwave heating is considered as a green technique that could allow the reduction of time, and a more energy 

efficient process than the conventional heating as the heating transfer is faster (Aguilar-Reynosa et al., 2017).   

The aim of this work was to observe the benefits that the assistance by microwave of the alkaline delignification 

treatment of the hydrothermally pretreated vine shoots could exert on the delignification yield compared with the 

conventional heating. The scheme of the employed experimental procedure is shown in the Figure 1. The 

influence of an important variable such as the temperature of the delignification treatment on the lignin removal 

was also studied; therefore, the delignification treatments were carried out at several temperatures (50, 75,100 

and 125 ºC). The influence of the microwave-assisted delignification treatment and its temperature on the 

structure of the hydrothermally pretreated vine shoots was analyzed. Thus, this solid and the delignified solids 

were subjected to compositional, FTIR and XRD analysis. 

 

  

Figure 1: Biorefinery scheme for the revalorization of the vine shoots  

2. Materials and methods 

2.1 Raw material 

Vine shoots from the grape variety Hondarribi Zuri were obtained from the pruning of the vine after the vintage 

of 2015 and they were supplied by the local winery Aldakoa S.L. (Basque Country, Spain). Once collected the 

residues were milled and sieved in order to have a single and homogenized lot with a particle size smaller than 

0.4 mm. This lot was stored in a dark and dry place until it was used. The composition of the raw material has 

been reported in previous works (Dávila et al., 2016).  

2.2  Hydrothermal treatment of the vine shoots 

The vine shoots were subjected to a hydrothermal treatment in a non-isothermal regimen by mixing them with 

water in a LSR of 8 Kg/Kg (oven-dried basis) in a 1.5 L stainless steel Parr reactor. The treatment was carried 

out at 200 ºC in a non-isothermal regimen being the temperature controlled by a Parr PID control. Once reached 

the temperature the reactor was cooled down and the solid and liquid fractions were separated by filtration, 

being the solid phase washed and stored at 4 ºC without being dried. 

2.3 Microwave assisted delignification of pretreated vine shoots 

The alkali delignification was carried out in a CEM-Discover SP microwave by mixing the hydrothermally 

pretreated vine shoots with a solution of 3.1 w/w% NaOH in an LSR of 10 Kg/Kg (oven-dried basis), using 35 
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mL Teflon PFA liners. The treatments were carried out at different temperatures (50, 75, 100 and 125 ºC) for 30 

min and using a microwave power of 100 W. After the reaction time, the system was cooled down and the solid 

and liquid phases were separated by filtration, being the solid phases washed with a solution of 3.1 w/w% NaOH 

and then they were neutralized with water. The obtained solid phase was air-dried, quantified and subjected to 

a moisture determination in order to determine the solid yield and to estimate the amount of solubilized substrate.    

2.4 Analysis of the obtained solid fractions 

Chemical composition  

The hydrothermally pretreated vine shoots, together with the delignified solids were subjected to several 

analysis in order to determine the structural changes that the residue suffers with the temperature of the 

delignification treatments. The different solids were milled and sieved in order to have a particle size smaller 

than 0.25 mm, once the hydrothermally pretreated vine shoots were air-dried.  

The solid phases were subjected to a quantitative acid hydrolysis (HAC) in order to determine their composition 

in glucan, hemicelluloses and acid insoluble lignin (modification of the TAPPI T-249-cm-09). The solids were 

subjected to an acid hydrolysis with H2SO4 72 w/w% for 1 h at 30 ºC followed by a second acid hydrolysis carried 

out by diluting the samples to 4 w/w% H2SO4 and keeping them in an autoclave for 1 h at 121 ºC. After the 

hydrolysis, the liquid and solid phases were separated by filtration. The obtained solid phase was oven-dried 

and it was considered as acid insoluble lignin, while the liquid phase was analysed by High Performance Liquid 

Chromatography (HPLC) for the determination of monosaccharides (glucose, xylose and arabinose) 

galacturonic and acetic acid and degradation products (furfural and 5-(hydroxymethyl)furfural). The liquid 

phases were analysed using a Jasco LC Net II/ADC chromatograph equipped with a refractive index detector 

and an Aminex HPX-87H column (Bio-Rad Laboratories, USA). The samples were eluted with a solution of 

0.005M H2SO4 with a flow rate of 0.6 mL/min at 50ºC. All the analysis was carried out in triplicates.  

Fourier transform infrared spectroscopy (FTIR) analysis 

The chemical structure of the different obtained solids was determined by FTIR to study the changes that took 

place depending on the temperature of the treatment. The samples were analysed in a PerkinElmer Spectrum 

Two FT-IR spectrometer working with a resolution of 4 cm-1 and accumulating 8 scans in a transmission mode. 

The spectrums were recorded from 4000 to 600 cm-1.  

X-ray diffraction (XRD) analysis 

The different solids were subjected to an XRD analysis in order to determine the crystallinity index. The samples 

were analysed using a Bruker AXD-D8 Advance diffractometer with a Kristalloflex 760 X-ray generator, which 

generated focused and monochromatized Kα X-rays from a Cu source. The recordering of the scans was carried 

out between 5-35 2θ over 10 min with a 40 kV and 40 mA current. The phases present in the samples was 

carried out using the EVA evaluation programma and the Bruker CDS database. The crystallinity index was 

calculated taking into account the height ratio between the intensity of the cyrstalline peak (I002 – IAM) and the 

total intensity I002 (Park et. al., 2010).  

3. Results and discussion 

3.1 Delignification yield and chemical composition 

In this study the influence of the temperature on the microwave-assisted alkaline delignification treatment of 

hydrothermally pretreated vine shoots was analysed. The solid used during the delignification treatments 

presented very little hemicellulosic content as it can be seen from the results collected in the Table 1. This 

demonstrates that during the hydrothermal pretreatment the hemicellulosic fraction of the untreated vine shoots 

was efficiently solubilized as the composition of this solid differs completely from the one of the untreated vine 

shoots, which presented 27.0 % of hemicelluloses, 33.0 % of glucan, and 26.7 % of lignin (on oven-dry basis) 

(Dávila et al. 2016).   

From the composition of the microwave assisted alkaline delignified solids, shown in the Table 1, it can be seen 

that the microwave technology permitted the reduction of time, NaOH concentration and temperature of the 

treatment compared with the delignification carried out with conventional heating. Davila et al. (2017b) were 

able to remove 67.7 % of the lignin present in hydrothermally pretreated vine shoots when the delignification 

was carried out at 124 ºC for 75 min and using a solution of 12 w/w% NaOH. However, when the delignification 

treatment was assisted by microwave better delignification yields were obtained working at lower and similar 

temperatures (100-125ºC) but carrying out the treatment for 30 min and using a NaOH solution of 3.1 w/w%.  
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Table 1: Composition of the solid obtained after the hydrothermal and delignification treatments 

 Hydrothermal Delig. 50ºC Delig. 75ºC Delig. 100ºC Delig. 125ºC 

Solid yield (%) - 89.46 72.75 56.48 46.69 

Glucan (%) 32.25 33.30 35.82 44.83 50.75 

Lignin (%) 52.65 37.08 32.56 14.32 16.68 

Hemicelluloses (%) 7.38 4.76 3.5 3.16 0.01 

Xylan (%) 6.37 4.49 3.28 2.97 0.01 

Acetyl groups (%) 1.01 0.27 0.22 0.19 - 

Delignification yield (%) - 37.00 55.01 84.63 85.20 

Glucan loss (%) - 7.63 19.20 21.50 26.53 

 

The strong influence of the temperature of the delignification treatment on the composition of the delignified 

solids and on the deIignification yield can also be appreciated from the results shown in the Table 1.  

As it can be seen the increase of the temperature, which makes the treatment more severe, provoked a 

reduction of the solid yield due to the higher lignin and glucan removal. During the alkaline delignification 

treatment, mainly the degradation and solubilization of the lignin fraction takes place by the breaking of the ether 

linkages that maintain the inter-units of the lignin together (Xu et al., 2016). However, this treatment is not as 

selective as it ideally could be as the degradation of carbohydrates is unavoidable (Xu et al., 2016). As it can 

be seen in the Table 1, the lignin removal increases with the temperature until it reached 100 and 125 ºC, when 

the delignification yield remained almost constant. Stoklosa and Hodge (2015) also observed that the 

degradation of the lignin increased with the increase of the severity of the treatment when they studied the 

alkaline delignification of hardwoods such as sugar maple, silver birch and hybrid poplar. They also observed a 

decrease of the delignification rate with the increase of the severity of the treatment together with additional 

polysaccharide losses. It can also been seen that the increase of the severity of the delignification treatment 

produced an increase of the glucan loss. Xu et al. (2016) suggested that the glucan loss could be attributed to 

peeling and hydrolysis reactions of cellulose, which could be favored at high temperatures and strong alkaline 

solutions. 

3.2 FTIR analysis of the solids obtained after the hydrothermal and the delignification treatments 

The solids obtained after the hydrothermal and microwave assisted alkaline delignification treatments were 

analysed by FTIR in order to study how the delignification treatment and its temperature influence the chemical 

structure of the hydrothermally pretreated vine shoots. The Figure 2 collects the FTIR spectra obtained from 

each analysed solid and as it can be seen the temperature used during the delignification treatment affected 

the intensity and the presence of the bands. The band assignation was carried out taking into account what it 

has been described in the literature (Pereira et al., 2016).  

The bands observed at 1,604 and 1,508 cm-1 were associated to the lignin structure as they correspond to the 

typical skeletal vibration of aromatic rings and to the presence of guaiacyl units, respectively. The band observed 

at 1,234 cm-1 corresponds to the characteristic C-O stretching of hemicelluloses and lignin. On the other hand, 

the bands observed at 1,425, 1,375 and 1,325 cm-1 were attributed to the crystalline structure of the cellulose. 

Another two bands associated to the cellulose structure were observed at 1,164 cm-1 and 1,035 cm-1 as they 

correspond to the C-O-C asymmetric stretching and to the C-O stretching of cellulose. The bands that appeared 

at 1,114 and 1,051 cm-1 were also associated to the cellulose as they correspond to the γ ring in plane vibration 

(Oh et al., 2005) and to the linkages present in the cellulose. Another characteristic band of the cellulose was 

observed at 872 cm-1 which corresponds to the β-glycosidic linkages.     

As it can be appreciated from the Figure 2, the FTIR spectra of the solid residues obtained after the 

delignification treatments carried out at 50 and 75 ºC resembled more to the hydrothermally pretreated solid. 

While the FTIR of the solids obtained under more severe delignification conditions (100 ºC and 125 ºC) 

presented the greatest differences compared with the hydrothermally pretreated solid, being its chemical 

structure more affected during the treatment. The main bands affected during the treatments were those 

associated with the lignin and cellulose structure.  

It can be observed that the bands associated to the lignin structure as can be the ones observed at 1604 and 

1508 cm-1 presented lower intensity with the increase of the severity of the treatment, having them almost 

disappeared in the spectra of the solids obtained after the delignification at 125 ºC. Although all the FTIR spectra, 

presented the bands associated with the cellulose it can be seen that the intensity of those associated to the 

crystalline of the cellulose, as it is the case of the bands observed at 1,425, 1,375 and 1,325 cm-1, presented an 

increase of their intensity with the increase of the severity of the delignification conditions. It can also appreciate 

the increase of the intensity of the band observed at 872 cm-1 with the increase of the temperature of the 

delignification treatment. The tendencies of the reduction of the intensity of the bands associated with the lignin 

1690



and the increase of the intensity of the bands associated with the cellulose with the increase of the severity of 

the delignification treatment is in agreement with the trend observed for the chemical composition of the 

delignified solids.  

 

 

Figure 2: FTIR spectra of the solids obtained in the hydrothermal and delignification treatments  

3.3 XRD analysis of the hydrothermally pretreated and delignified solids 

The alkaline treatments apart from provoking the disruption of the lignin structure, as it has been seen for the 

chemical composition of the delignified solids, they could alter the morphology and conformation of the cellulose 

decreasing its degree of polymerization and crystallinity (Taherzadeh et al., 2007). The crystallinity of the solid 

phases is an important parameter to take into account for the employment of the delignified solids in a 

subsequent enzymatic saccharification, which is part of the SSF treatment (Binod et al., 2012). In order to study 

the crystallinity index of the hydrothermally pretreated vine shoots and of the obtained delignified solids they 

were subjected to an XRD analysis, being the crystallinity index collected in the Table 2.  

 Table 2: Crystallinity index of the solid obtained after the hydrothermal and delignification treatments 

 Hydrothermal Delig. 50 ºC Delig. 75 ºC Delig. 100 ºC Delig. 125 ºC 

Crystallinity index 43.60 40.21 37.91 44.42 49.29 

 

As it can be seen in this table, compared with the hydrothermally pretreated vine shoots the solid residues 

obtained in the microwave-assisted alkaline delignification treatments carried out below 100 ºC presented a 

lower crystallinity index, as it was expected. However, in those delignification treatments carried out above 

100ºC the crystallinity index of the obtained solids was higher than the one estimated for the hydrothermally 

pretreated vine shoots. Binod et al. (2012) also observed this tendency when they carried out a microwave-

assisted alkaline delignification of sugarcane bagasse at high temperatures. They attributed the increase of the 

crystallinity to the removal of the lignin fractions during the treatment, which could be a possible explanation for 

what it has been observed during the delignification treatments carried out above 100 ºC. The increase of the 

crystallinity of the solids obtained with the severest conditions could also be associated with the higher glucan 

loss observed in these conditions, which could be part of the amorphous cellulose present in the solid.  

It could be seen that the crystallinity index of the solids obtained by the microwave-assisted alkaline 

delignification of hydrothermally pretreated vine shoots didn´t follow a simple trend, as it could be influenced by 

the decrease of the crystallinity of the cellulose, the removal of cellulose and the removal of lignin during the 

delignification treatments. Karp et al. (2014) also found it difficult to correlate the crystallinity results of alkaline 

pretreated corn stovers, as according to them the crystallinity measurements was convoluted by all the effects 

that takes place during the alkaline delignification treatments.  
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4. Conclusions 

The microwave-assisted alkaline delignification at different temperatures of hydrothermally pretreated vine 

shoots at 200 ºC using a non-isothermal regimen was carried out, concluding that the microwave is a promising 

technology that could permit the soften of the treatment conditions. The temperature of the treatment influenced 

strongly on the chemical composition, structure and crystallinity of the delignified solids. The treatment carried 

out at most severe conditions (125 ºC) permitted the obtaining of delignified solid with 16.68 % of lignin and 

50.75 % of glucan and a higher crystallinity index than the hydrothermally pretreated solid, making it a promising 

solid for a subsequent SSF treatment.  
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