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Resilience in response to disruption events is critical to the economic performance of process systems, but this 

concept has received limited attention in the literature. A general framework for resilience optimization is 

proposed to incorporate an improved quantitative measure of resilience and a comprehensive set of resilience 

enhancement strategies for process design and operations. The proposed framework identifies a set of 

disruptive events for a given system, and then formulates a multiobjective two-stage adaptive robust mixed-

integer fractional programming model to optimize the resilience and economic objectives simultaneously. The 

model accounts for network configuration, equipment capacities, and capital costs in the first stage, and the 

number of available processes and operating levels in each time period in the second stage. The applicability 

of the proposed framework is demonstrated through an application on process network design and planning. 

1. Introduction 

A major goal of risk management is to avoid the occurrences of undesired events by implementing effective 

prevention and protection strategies (Hosseini et al., 2016). However, many disruptive events, such as 

Hurricane Sandy in 2012 and the Haiti and Chile Earthquake in 2010, suggest that not all unexpected events 

can be avoided (Bhamra et al., 2011). Common disruptive events include natural disasters (such as tornados, 

earthquakes, and hurricanes), process accidents (such as faulty operations), and intentional man-made attacks 

(such as terrorism and sabotage) (Dinh et al., 2012). Disruptive events usually strike a process system and 

cause critical failures in vulnerable processes (Rehak & Novotny, 2016). System-level resilience was first 

introduced in ecology as the persistence of systems regarding unexpected change and disturbance (Holling, 

1973). Although resilience may be interpreted by different terminologies in various contexts (Vugrin et al., 2010), 

a resilient system is always capable of absorbing a portion of the impacts from disruptive events and recovering 

to the original state rapidly (Miranda et al., 2017). A resilient plant could move fast and smoothly from one 

operating condition to another and dealt effectively with disturbances (Morari, 1983). A relevant concept of 

resilience was flexibility (Grossmann et al., 2014) which can help predict the probability of feasible operation for 

a design (Straub & Grossmann, 1990). Another relevant concept of resilience was reliability, which described 

the failure rate due to equipment aging. As the resilience of a process system is relevant to both safety and 

operability, the system performance under the worst-case realization of disruptive events is of paramount 

importance. However, resilience was not quantified explicitly as an intrinsic property of the system and there is 

no systematic framework for resilience optimization of process systems. 

In this work, a novel quantitative measure of resilience is proposed as the ratio of the quantity of products 

manufactured with disruptive events to that without disruptive events. Based on the quantitative measure of 

resilience, a general framework for resilience optimization with three steps is proposed. First, a preliminary risk 

assessment is performed to identify the disruptive events and the numbers of failed processes for the identified 

disruptive events. Then a multiobjective two-stage adaptive robust mixed-integer fractional programming 

(ARMIFP) model is formulated to maximize the resilience under the worst-case realization of disruptive events, 

and to minimize the total capital cost. Future work is to include utility cost in the cost objective. The applicability 

of the proposed framework is illustrated through the design and planning of a chemical process network. 
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2. General framework for resilience optimization 

A general framework for resilience optimization is proposed that incorporates the quantitative measure of 

resilience and the five resilience enhancement strategies. As shown in Figure 1, there are three steps in the 

proposed resilience optimization framework. In the first step, a preliminary risk assessment is performed for a 

given system. A set of disruptive events are identified, and the related information, such as the number of failed 

processes in the given system and the recovery time of each process, is used as input parameters in the second 

step to formulate a multiobjective two-stage ARMIFP model. In the third step, the multiobjective two-stage 

ARMIFP problem is solved by a tailored global optimization method that integrates the parametric algorithm and 

the column-and-constraint generation algorithm. 

 

 

Figure 1: Three steps in the general framework of resilience optimization 

2.1 Novel quantitative measure of resilience 

Common disruptive events include natural disasters (such as tornados, earthquakes, and hurricanes), process 

accidents (such as faulty operations), and intentional man-made attacks (such as terrorism and sabotage) (Dinh 

et al., 2012). Many system performance indicators, such as the flow rates of key streams and the number of 

normally functioning processes, respond to disruptive events dynamically and reflect the impacts of disruptive 

events to a given system. There are three sequential phases of a system performance function F(t). The 

disruptive events occur at t0 and cause initial failures in the process system. The first phase, or the impact 

propagation phase, lasts from t0 to t1. During this period, the initial failures cause additional failures in other 

normally functioning processes. Therefore, the system performance function keeps declining until t1, which 

corresponds to the lowest operating level. In the system recovery phase from t1 to t2, the failed processes in the 

given system recovers gradually and the system performance function increases to its original operating level. 

In the last phase from t2 to tn, the system maintains the operating level. 

     

0 1

0 0 0
0

Resilience

nt t

ti

n
w

F t w ti ti F t t t






              (1) 

where    k k
k

F t M t    ; M(t)k and ωk are the flow rate and the weight of product k, respectively; ti is the 

length of each time period. 

A novel quantitative measure is proposed in Eq(1). The disruptive events occur at t0 and the time horizon is [t0, 

tn]. The denominator calculates the accumulated system performance from t0 to tn and the numerator calculates 

the accumulated system performance in the same period but assumes that no disruptive event occurs. This 

quantitative measure accounts for recovery time and performance degradation simultaneously. Moreover, as 

the quantitative measure is normalized by the accumulated system performance without disruptions, the 

resilience analysis results can be compared among distinct process systems. The failed processes of a given 

system can be reused only if they are fully repaired and tested. Therefore, system performance remains flat in 

each time period, and the system performance functions are step-wise functions. 

2.2 Uncertainty set 

The concept of uncertainty set is used in robust optimization to capture the uncertain disruptive events (Shang 

et al., 2017). A disruptive event can impact only one process or multiple processes in the given system. External 

factors include, but not limit to, the type, scale, and severity of the disruptive event, the starting time of the 

disruptive event, the duration of the disruptive event, and the environment of the given system. Internal factors 

include, but not limit to, the use of advanced sensors, monitors, and process control technologies, the 

precautions against the disruptive event, and the contingency plans for the disruptive event. However, due to 

the uncertain nature of disruptive events, it is impossible to predict whether a process will be affected or not. 
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The availability of process i after the occurrence of disruptive event d is modeled as an uncertain 0-1 variable 

SIi,d. SIi,d is equal to one if the operating units in process i fail after the occurrence of disruptive event d, and 0 

otherwise. Given the same operating conditions, parallel operating units are assumed to show the same 

availability after the occurrence of disruptive event d. Additionally, constraints (2) and (3) are introduced to 

provide an upper bound of the number of failed processes in the given system. Γd denotes the number of failed 

processes of disruptive event d based on historical records or simulation results. As a decision-maker may 

consider it too conservative to hedge against the realization where Γd processes fail, a tolerance level ɛd is 

introduced to adjust the degree of conservatism of the optimal solution. Since a disruptive event may influence 

only a set of processes, the summation in constraint (2) are limited to a subset of sections IDd. The processes 

not in subset IDd are fixed to be 0 as enforced by constraint (3). The uncertainty set for the availability of each 

process can thus be formulated with the above-mentioned constraints: U= constraints (2) (3) . 

2.3 Two-stage adaptive robust nonlinear programming model and tailored solution algorithm 

Given the definition of resilience and the uncertainty set, a multiobjective two-stage ARMIFP model is developed 

for resilient design and operations (Gong et al., 2016). The decisions are determined sequentially in two stages 

(Shi et al., 2016). The first-stage decisions, including network configuration, equipment capacities, and capital 

costs, are determined before the occurrence of the disruptive events; the second-stage decisions, including the 

number of available processes and operating levels in each time period, are determined after the occurrence of 

the disruptive events. There are two objective functions in the general form of the proposed model (shown 

below). The first objective is to maximize the resilience under the worst-case realization of the availability of 

process units, and the second objective is to minimize the total capital cost of the given system. 

 

max min max   Resilience

min                  Total capital cost

UC1 C2

C1

 

where C1= network design; equipment capacity constraints; capital cost evaluation , 

           C2= recovery constraints; operating level constraints . 

 

Since the proposed multiobjective two-stage ARMIFP model has a multilevel structure, it cannot be handled 

directly by any off-the-shelf optimization solvers. Additionally, due to the combinatorial nature and nonconvexity 

stemming from the mixed-integer terms and the fractional objective function, the optimization problem is 

challenging to solve. To tackle the computational challenge, a tailored optimization algorithm is used to efficiently 

solve this ARMIFP problem (Gong and You, 2017). Specifically, the optimization algorithm employs the 

parametric algorithm in the outer loop to tackle the computational challenge stemming from the fractional 

objective function. Instead of solving the original optimization problem with the fractional objective function 

directly, an auxiliary parameter r and an auxiliary parametric problem P(r) are introduced. The optimal solution 

of the orginal optimization problem is identical to the optimal solution of the auxiliary parametric problem with 

the parameter r* such that P(r*) = 0 (Zhong and You, 2014). Each iteration of the parametric algorithm needs to 

solve a two-stage adaptive robust MILP problem P(r), which cannot be tackled directly by any off-the-shelf 

optimization solvers. Instead, a master problem and a subproblem of P(r) are developed and solved iteratively. 

This solution algorithm is guaranteed to converge within finite iterations (Ning and You, 2017). A conventional 

design and operations problem that minimizes the total capital cost without disruptive events is solved after the 

initialization step, and the optimal first-stage solutions are used by the first subproblem in each inner loop. 

3. Application to chemical process network design and planning 

The application of the proposed resilience optimization framework is illustrated thorough the resilient design and 

planning of a chemical process network with ten chemicals and six processes as shown in Figure 2 (You & 

Grossmann, 2011). The feedstock materials include acetylene, propylene, benzene, and nitric acid; the products 

include acetaldehyde, acrylonitrile, isopropanol, phenol, acetone, and cumene (Yue and You, 2013). The 

correlation parameter is 1 for all processes and disruptive events. The tolerance level is equal to 5 % for all 

disruptive events. There are 4 case studies: Case studies 1 – 3 involve only one disruptive event, and case 

study 4 involves two disruptive events. The numbers of failed processes in case studies 1 – 3 are 2, 4, and 6, 

respectively. In case study 4, the numbers of failed processes of the first and second disruptive events are 3 

and 2, respectively.  
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All computational experiments are performed on a DELL OPTIPLEX 7040 desktop with Intel(R) Core(TM) i7-

6700 CPU @ 3.40GHz and 32 GB RAM. The solution procedure is coded in GAMS 24.8.5 (Rosenthal, 2016), 

with CPLEX 12.7 used as the MILP solver. The relative optimality tolerances for the inexact parametric algorithm 

and the column-and-constraint generation algorithm are 10-6. The subproblem of all case studies and instances 

consist of 6 integer variables, 1,766 continuous variables, and 1,690 constraints. All instances in the first 

application can be solved in less than 2 min.  

 

    

Figure 2:  Chemical process network of the case studies. 

 

Figure 3: Pareto-optimal curves of the four case studies. 

The optimal solutions of the multiobjective two-stage ARMIFP problems can be plotted as Pareto-optimal curves 

in Figure 3. Each point on the Pareto-optimal curves corresponds to an optimal solution of the optimization 

problems. On the Pareto-optimal curves, an increase in resilience corresponds to an increase in the total capital 

cost. For case study 1, the most resilient solution demonstrates a resilience of 1 and a capital cost of $8.64 M, 

while the most cost-effective solution demonstrates a resilience of 0.71 and a capital cost of $4.32 M. Both 
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optimal solutions employ the same operating processes, but the minimum capital cost of the most resilient 

solution is twice of that of the most cost-effective solution. It is noted that the most resilient solution includes a 

set of backup processes with the same capacities of the corresponding operating processes, while no backup 

process is built for the most cost-effective solution. The optimal capital cost ranges from $4.32 M to $8.64 M 

across all the case studies. If the optimal capital cost is fixed, the optimal resilience decreases as more failed 

processes are considered in the optimization problem. The Pareto-optimal curve in case study 2 overlaps with 

that in case study 4, because the total numbers of failed processes adjusted by the tolerance level are the same 

in these two case studies.  

Each point on a Pareto-optimal curve corresponds to an optimal process design. Figure 4 presents the optimal 

capital costs as well as the worst-case realization of the optimal solutions A, B, C, and D in Figure 2. To satisfy 

the product demands, the optimal solutions A, B, and D select the same processes with the same equipment 

capacities of the operating processes. The difference lies in the capacities of the backup processes. There is 

no backup process in the optimal solution A in order to minimize the total capital cost. With a higher capital 

investment, a backup process is built for process 4 in the optimal solution B. Although the capacity of this backup 

process is smaller than that of the corresponding operating process, it effectively increases the worst-case 

operating levels from 230 ton/day to 330 ton/day in time periods 1–3. As an extreme case of the optimal solution 

B, the optimal solution D establishes backup processes for all the operating processes and the capacities of the 

backup processes are the same as the corresponding operating processes. In the optimal network designs of 

solutions A, B, and D, only process 1 is employed to produce acrylonitrile. A different process design is selected 

for the optimal solution C and both process 1 and process 3 are employed to produce acrylonitrile. Accordingly, 

the capacity of process 1 in the optimal solution C is lower than those in the optimal solutions A, B, and D. 

 

 

Figure 4: Capital cost breakdowns and worst-case realizations of four optimal solutions. Network design (i) 

corresponds to the optimal solutions A, B, and D. Network design (ii) corresponds to the optimal solutions C. 

4. Conclusions 

A general framework for resilience optimization is proposed to incorporate a quantitative measure and the 

resilience enhancement strategies. The framework involves developing a multiobjective two-stage ARMIFP 

model after performing a preliminary risk assessment to identify the disruptive events and the numbers of failed 
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processes for the identified disruptive events. The applicability of the proposed resilience optimization 

framework is illustrated through the design and planning of chemical process networks. The maximum resilience 

of the chemical process network ranges from 0.71 to 1 if two out of six processes in the network fail after the 

occurrence of a disruptive event, while the corresponding minimum capital cost ranges from $4.32 M to $8.64 M. 
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