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Single-core computational efficiency of several iterative methods for numerical solution of nonsymmetric linear 

systems originating from simplified fluid flow models is evaluated together with different preconditioning 

techniques in terms of solution behaviour and the overall rate of convergence. A previously developed 

simplified 3D CFD model, which involves the solution of linear systems of orders usually from units to tens of 

thousands, is used to generate test cases. The respective Java software application employs the Parallel Colt 

linear algebra library. This is to ensure that the corresponding sparse matrix computations needed in different 

solution and preconditioning methods are carried out in as efficient a manner as possible to minimize 

the influence of the computer implementation itself. Measures (warm-up phase etc.) are taken to eliminate the 

effects of JVM-specific behaviour such as JIT compilation. 

1. Introduction 

Improving performance is crucial when it comes to computational methods used to evaluate objective 

functions in direct optimization algorithms. Because the simplified 3D CFD model proposed by Turek et al. 

(2016) is intended for just this purpose, i.e., fast evaluation of many possible flow system geometries in the 

early stage the apparatus design process, finding ways to further shorten computational time and improve 

convergence should be considered. This paper aims to do this by applying preconditioning techniques to the 

numerical methods used to obtain solutions of the underlying systems of linearized equations. 

Even though the simplified 3D CFD model has a lot in common with the classical CFD models implemented 

in various simulation tools, it utilises a largely simplified and rather coarse mesh while turbulence is also 

modelled in a simplified manner. Consequently, the numerical behaviour of the model is more erratic and 

significantly more prone to divergence. The respective preconditioning techniques must therefore be selected 

carefully with respect to the specifics of the model. This, however, is not possible by just relying on literature 

discussing the classical CFD approach such as the monographs by Saad (2003) or Bruaset (1995) focusing 

on iterative methods or preconditioning techniques, respectively. Similarly, numerical performance-oriented 

investigations (e.g. Norris, 2000) or various papers presenting the respective preconditioning performance 

comparisons (e.g. Ma, 2000) are of limited use here because they were carried out with the classical CFD 

models. In other words, the only way to properly choose preconditioning techniques for the numerical solution 

methods involved in the simplified CFD model is to perform the respective benchmarks. 

Additionally, only single-core performance is considered in this paper. The reason for such a limitation is that, 

given the simplified meshes containing relatively small amounts of cells, the computational overhead resulting 

from splitting a task over multiple cores would be significant. It is therefore much more economical in terms 

of CPU time to limit each computation to a single core and run these computations asynchronously on multiple 

cores within a suitable optimisation algorithm. 

2. Benchmarking procedure 

The paper by Turek et al. (2016), which discussed in detail the simplified 3D CFD model, also presented 

a Java software where this model had been implemented. Because originally the software did not include any 
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preconditioning or benchmarking capabilities, these had been added. In keeping with (Goetz, 2005), however, 

the following measures were taken so that the results were not affected by Java-specific behaviour: 

• 30 warm-up runs (i.e., full computations from initialization to converged state including all the related 

diagnostic printouts, data saving, etc.) were always carried out. This was to make sure that all Java 

initializations and compilations have been finished before the timing phase. 

• The code was run with “XX:+PrintCompilation” and “verbose:gc” JVM options to check whether enough 

warm-up runs were carried out (see the item above). Similarly, “Xbatch” was used to serialize the compiler 

with the application. 

• Even though the benchmarks were run with no other applications being opened at the same time, 50 test 

runs were carried out to eliminate the effect of various tasks which the OS performs in the background. 

Means and standard deviations were then calculated from the obtained data (no outliers were 

encountered in any of the tests). 

For consistency and efficiency’s sake, all the involved numerical routines and sparse matrix computations 

utilised the Parallel Colt linear algebra library (Wendykier and Nagy, 2010). Moreover, the benchmarks were 

run on two disparate machines to find if this made any difference in terms of single core computational 

efficiency. These were as follows: (a) server: Intel Xeon E5-2698 v4 with 128 GB RAM, (b) laptop: Intel Core 

i5-6300U with 16 GB RAM. 

2.1 Evaluated solution and preconditioning methods 

The following commonly used iterative methods for numerical solution of linear systems were tested: 

conjugate gradient (CG) (Hestenes and Stiefel, 1952), conjugate gradient on the normal residuals (CGNR) 

(Saad, 2003), and bi-conjugate gradient stabilized with minimization of residuals over L-dimensional 

subspaces, L = 1, …, 8, (BiCGstab(L)) (Sleijpen and Fokkema, 1993). Other methods with smoother 

convergence such as generalized minimal residual (GMRES) (Saad and Schultz, 1986), quasi-minimal 

residual (QMR) (Freund and Nachtigal, 1991), or iterative refinement (IR) (Moler, 1967) were not considered 

because their rates of convergence generally are much slower than those of CG-based methods. 

The solution methods listed above were used either with no preconditioner, or with one of these five 

preconditioner types when applicable: diagonal (i.e., Jacobi) (van der Vorst, 2003), incomplete LU factorization 

(ILU) (Meijerink and van der Vorst, 1977), dual-threshold incomplete LU factorization (ILUT) (Saad, 1994), 

symmetric successive overrelaxation (SSOR) (Young, 1977), and incomplete Cholesky factorization (ICC) 

(Manteuffel, 1980). Please note that in this study only the default relaxation parameters of 1.0 for the SSOR 

forward and backward sweeps were used, i.e., effectively the method reverted to the Gauss-Seidel form. 

As for newer solution methods and preconditioning techniques, these generally are various multigrid 

implementations using several increasingly coarsened grids (e.g. Ruggiu et al., 2018) or are explicitly tailored 

to multi-core usage (e.g. Esmaily et al., 2018). The former approach is not feasible in case of the already 

much simplified meshes, while the latter one is out of the scope of this paper for the reasons discussed earlier. 

2.2 Test cases 

The flow system used for benchmarking purposes was a Z-arranged one with identical cuboid headers 

(width × height × length = 40 × 40 × 380 mm) and a tube bundle containing two inline rows of 20 tubes each. 

The respective tube length was 500 mm while the inner diameter was 10 mm. Two meshes of different 

finenesses were considered. The coarser one consisted of roughly 6,000 cells while the finer one contained 

roughly 25,000 cells. Boundary conditions were as follows: mass flow inlet with the rate set to 0.5 kg/s of water 

at 300 K and pressure outlet with the boundary pressure of 101,325 Pa. Heat flux of 25 kW was defined solely 

on the tube walls if the energy equation was enabled, otherwise all the walls were adiabatic. Considering other 

CFD model parameters, steady-state simulations were carried out using the SIMPLEC pressure-velocity 

coupling (van Doormaal and Raithby, 1984), Power Law discretization scheme (Patankar, 1981), and standard 

scaled residual limits (10–3 for continuity and momentum, 10–6 for energy). 

Because CG and ICC require symmetric, positive-definite matrices, these two methods were only used for the 

pressure correction equation. Although SSOR together with its forward-only or backwards-only versions were, 

too, originally meant for such matrices, they have been shown by Birken et al. (2013) and Woźnicki (2001), 

respectively, to work quite well even when the respective matrix was not symmetric. What is more, 

construction of the SSOR preconditioning matrix cannot lead to breakdown (contrary to incomplete 

factorization methods) and therefore this technique was evaluated with all types of equations. 

The set of test cases (i.e., combinations of the solution and preconditioning methods) was built in successive 

steps with respect to the obtained results. First, all feasible solution methods were evaluated on the server 

using the coarser mesh without preconditioning being applied to find the baseline performances. These 

combinations were subsequently also tested with only the pressure solver, or only the momentum solvers, 

being preconditioned. Promising combinations of the solution and preconditioning methods that were thus 
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obtained were evaluated in the third step. The fourth step in the benchmarking process constituted testing 

of the best combinations found so far, but this time with the energy equation being enabled and solved both 

without any preconditioning (again to find baseline performances) and with various preconditioners in place. 

This totalled to 934 cases. 

Any combination which failed to converge within 1,000 iterations or 10 minutes was deemed unsuitable. The 

remaining 214 combinations were tested using the finer mesh, for which the suitability thresholds were 2,000 

iterations or 20 minutes. The best 10 combinations in terms of (a) flow only and (b) flow and energy transport 

were in the end also evaluated using each mesh on the laptop along with the corresponding baseline 

combinations (i.e., without any preconditioning being applied). This constituted 60 additional cases. 

In summary, 1,148 cases were evaluated on the server and 60 cases on the laptop. 

3. Results 

The results are split into four categories covering the two meshes (coarser and finer) and two simulation 

scenarios (flow only and flow & energy transport). Overall rate of convergence is discussed first and then 

a few comments on smoothness of convergence and solution behaviour in general are provided. 

3.1 Overall rate of convergence 

Figures 1 through 4 show the ten best-performing combinations of the solution and preconditioning methods 

for each mesh and simulation scenario. Each of the graphs contains mean computational time and the 

corresponding standard deviation obtained using both the server and the laptop. Average improvements over 

the respective baseline combinations (those with no preconditioning being applied) are also provided. These 

values are the averages of the speedups obtained using the two machines and, if tA denoted the actual 

computational time and tB the baseline time, are computed as tB / tA – 1. 

As can be seen from Figure 1, which corresponds to flow only and the coarser mesh, the best approach was 

to solve the pressure correction equation with CG preconditioned using ILU and the momentum equations with 

BiCGstab(3) using the same preconditioner. A converged solution was reached in 3.0 s with this setup. 

Compared to the respective average baseline time of 15.7 s, this yields the improvement of 4.0. It is also 

apparent that in almost all the listed cases the laptop performance was slightly better. The reason for this 

might lie in the fact that the laptop CPU core ran during benchmarks at much higher clock rate than the server 

CPU core (2.93 GHz vs. 2.20 GHz). 

 

Figure 1: Ten best-performing combinations of solution and preconditioning methods in case of simulation 

of only the flow using the coarser mesh (roughly 6,000 cells) 

The results were very similar when the finer mesh was used (see Figure 2). Again, the best combination was 

CG/ILU for the pressure correction equation and BiCGstab(3)/ILU for the momentum equations, with the 

respective computational time being 55.7 s. Given this combination’s baseline time of 308.6 s, the average 

speedup was 4.5. Furthermore, Figure 2 shows that even in this case the laptop CPU slightly overperformed 

the server one. 

When the energy equation was enabled while dealing with the coarser mesh (see Figure 3), in all the ten best 

cases CG/ILU was used to solve the pressure correction equation; however, BiCGstab(2)/ILU overperformed 

BiCGstab(3)/ILU. As for the energy solver, the best combination used BiCGstab(2)/SSOR. The corresponding 

speedup was 3.6 (on average, computational time decreased from 36.7 s to 8.0 s). The notable increase 

in computational time over the flow-only scenarios was caused primarily by much more iterations being 

needed for the energy scaled residual to reach the standard limit of 10–6. Additionally, here the server CPU 

performed slightly better than the laptop one. This might be because larger amounts of varied data and 
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instructions were being handled and the fact that the server CPU had an order of magnitude more L1, L2, and 

L3 caches. 

Results related to the finer mesh, which are shown in Figure 4, are quite similar to those shown in Figure 3 

in terms of the pressure correction and momentum solvers. Still, there are significant differences in the utilized 

energy solvers – one can see many combinations with various unpreconditioned versions of BiCGstab(L) and, 

in case of the last combination, CGNR with diagonal preconditioning in place. The speedups, therefore, vary 

notably, i.e., combinations with all solvers being preconditioned perform roughly 10 to 17 times faster than 

their baseline variants, while with unpreconditioned energy solver the speedups are only about 3. In case 

of the best-performing combination, the average computational time dropped from 722.7 s to 69.2 s. It should 

also be mentioned that a much larger percentage of cases resulted without user intervention in divergence 

when the energy equation was enabled. Given the purpose of the original simulation tool and its having to be 

as autonomous as possible, the respective combinations were discarded as unsuitable.  

 

Figure 4: Ten best-performing combinations of solution and preconditioning methods in case of simulation 

of flow and energy transfer using the finer mesh (roughly 25,000 cells) 

 

Figure 2: Ten best-performing combinations of solution and preconditioning methods in case of simulation 

of only the flow using the finer mesh (roughly 25,000 cells) 

 

Figure 3: Ten best-performing combinations of solution and preconditioning methods in case of simulation 

of flow and energy transfer using the coarser mesh (roughly 6,000 cells) 
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As for the ICC and ILUT preconditioning methods, these proved to be wholly unsuitable due to their slow 

convergence. What is more, these two preconditioners were markedly more likely to lead to divergence than 

ILU or SSOR. 

3.2 Smoothness of convergence & general solution behaviour 

In general, if a combination of preconditioned solvers reached a converged solution, then the convergence 

was faster, yet not necessarily smoother, than in case of the corresponding unpreconditioned combination 

(see Figures 5 and 6). However, it was also true that divergence was much more common among 

preconditioned solvers than when unpreconditioned solvers were employed. ILU provided marginally 

smoother convergence than SSOR and significantly smoother convergence than diagonal preconditioning. 

Considering BiCGstab(L), smoothness of convergence increased with increasing value of L (see Figure 5). 

 

Figure 5: Comparison of scaled residual plots corresponding to three different combinations of solution and 

preconditioning methods in case of simulation of only the flow using the coarser mesh (roughly 6,000 cells) 

 

Figure 6: Comparison of scaled residual plots corresponding to a combination of unpreconditioned solution 

methods and the same methods preconditioned using ILU (pressure correction, momentum) and SSOR 

(energy) in case of the coarser mesh (roughly 6,000 cells) 

4. Conclusions 

The data presented in the previous paragraphs clearly suggest that in terms of the discussed simplified 3D 

CFD simulations best results are provided by different combinations of solution and preconditioning methods 

depending on whether only the flow or flow and energy transport are modelled. As for flow only, the best 

performance was reached using CG as the pressure correction solver together with BiCGstab(3) for 

momentum, both with ILU preconditioning being applied. The speedups compared to the respective baseline 

combination were ca. 4–5 depending on mesh fineness. If energy transport was included into the simulations, 

then the best results were obtained using CG/ILU for pressure correction, BiCGstab(2)/ILU for momentum, 

and BiCGstab(2)/SSOR or BiCGstab(2)/ILU for energy. The speedups corresponding to this combination were 

ca. 4 for the coarser mesh and ca. 10 in case of the finer mesh. Still, further tests should be carried out with 

respect to the selection of relaxation parameter ω ∈ (0, 2) in SSOR which, if chosen properly, can drastically 

improve performance. 
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Considering the two different CPUs, it is obvious that they performed almost identically in terms of single-core 

computations involving the small simplified meshes. 
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