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Process graphs (P-graphs) have been proven to be useful in identifying optimal structures of process systems 

and business processes. The provision of redundant critical units can significantly reduce operational risk. 

Redundant units and subsystems can be modelled in P-graphs by adding nodes that represent logical conditions 

of the operation of the units. It is revealed in this paper that P-graphs extended by logical condition units can be 

transformed into reliability block diagrams and based on the cut sets and path sets of the graph a polynomial 

risk model can be extracted. Since the exponents of the polynomial represent the number of redundant units, 

the cost function of the reliability – redundancy allocation problem as a nonlinear integer programming model 

can be formalised, where the cost function handles the costs associated with consequences of equipment failure 

and repair times. The applicability of this approach is illustrated in a case study related to the asset-intensive 

chemical, oil, gas and energy sector. The results show that the proposed algorithm is useful for risk-based 

priority resource allocation in a reforming reaction system.  

1. Introduction 

The reliability of energy production and process systems is of crucial importance. The provision of redundant 

critical process units/components can significantly reduce the operational risk of these systems. As such 

modifications of the technology require additional investment and maintenance costs, it is beneficial to formalise 

the reliability – redundancy allocation problem as an optimisation task. The wide range of models that represent 

the structure of the systems, costs and resource constraints has led to several optimisation models. Due to the 

complexity of the problem, most of these approaches have been developed for specialised systems (Norani et 

al., 2017) or to utilise metaheuristic algorithms (Kuo and Prasad, 2000). Although the problem is actively studied, 

there is still a need for a general approach that efficiently combines the tasks of process synthesis and reliability 

modelling. The aim of this paper is to construct a general framework for reliability-based redundancy optimisation 

founded on the flexible P-graph representation of the process optimisation problems (Friedler et al., 1992). 

Varbanov et al. (2017) published an overview paper about the application areas and potential future 

opportunities of the P-graph framework such as supply chain optimisation, chemical process synthesis, risk 

management, resource planning, evacuation planning and business process modelling. 

Our idea is rooted in the work of Süle et al. (2011), who created temporary nodes in the graph and applied a 

linear mathematical model for handling the uncertainty of the raw materials. A redundancy-based reliability 

improvement with regard to the P-graph-based optimisation of a biodiesel supply chain has already been 

proposed by Bertók et al. (2013). The importance of the P-graph-based reliability analysis of complex production 

systems was highlighted in a lecture by Orosz et al. (2016).  

Our key goal is to formalise a nonlinear integer programming model of the reliability-redundancy allocation 

problem based on a polynomial risk model extracted from the path sets and cut sets of the P-graph.  

To illustrate the proposed approach, the maintenance-related data of a reforming reaction system at Sinopec’s 

Luoyang Petrochemical Plant is studied (Hu et al., 2009).  
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2. Methodology 

Our focus is the safety critical optimal design of complex process systems. For this purpose, the reliability-

redundancy allocation task is interpreted as a process network synthesis problem and a widely applicable 

method is proposed for the evaluation of the reliability of systems represented by P-graphs.  

The process graph or P-graph is a directed bipartite graph used in process network synthesis (PNS) and 

workflow modelling (Friedler et al., 1992). The vertices of the graph can represent operations (O) and materials 

(M) that are the inputs and outputs of the operations. The PNS problem can be considered as a (𝑃, 𝑅, 𝑂) triplet, 

where 𝑃 ⊆  𝑀 and 𝑅 ⊆  𝑀 are special material sets for product and raw-type materials, while 𝑂 ⊆  ℘(𝑀)×℘(𝑀) 

is the set of the operating units. Although the operations originally represent material transformations, recently 

the whole concept has been extended to the modelling and analysis of workflows. The analogy between P-

graph and success trees (or reliability block diagrams) can easily be maintained when the “operating units” of 

the P-graph represent the logical connections and states of the functionalities of the components, and the 

“materials” are used to introduce the elementary faults into the model (see Figure 1). As represented in Figure 

2, the reliability block diagram (a) in some cases can be transformed into fault tree (b), success tree (c) and P-

graph (d). Although the original P-graph does not lend itself to reliability analysis, the cut set and path set-based 

analysis of the P-graph-related reliability block diagram allows the extraction of reliability estimation models.  

It is assumed that the system is built from c components. Due to failures, some of these components do not 

perform their required functions within specified performance requirements, which can result in the whole system 

losing its functionality. The functioning-or-failed condition of components is represented as an  𝒆 =

[𝑒1, … , 𝑒𝑖 , … , 𝑒𝑐]𝑇 vector, where 𝑒𝑖 = 1 represents that the 𝑖-th unit is functioning, while 𝑒𝑖 = 0 represents the 

failure of the i-th component. The system structure function is a Boolean function that maps {0, 1}𝑐 into {0, 1}, 

which represents 𝑒0 = 𝜑(𝒆), assuming the whole system is functioning correctly. When the components of the 

system are in series then 𝜑(𝒆) = 𝑒0 = 𝑒1 ⋅ … ⋅ 𝑒𝑐 , but when in parallel 𝜑(𝒆) = 𝑒0 = 1 − (1 − 𝑒1) ⋅. . .⋅ (1 − 𝑒𝑐). The 

reliability of the system is equivalent to the probability of the system properly functioning, 𝑃(𝜑(𝒆) = 1). The 

structure function is usually represented as reliability block diagrams.  

 

 

Figure 1: Representation of (a) AND, (b) OR dependencies and (c) redundancy of activities as OR connections 

 

Figure 2: Example of a (a) Reliability block diagram, (b) Fault tree, (c) Success tree, and (d) P-graph 

representation. As can be seen, P-graphs can represent reliability block diagrams and success trees 
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The reliability block diagram of the system is a labelled random graph, where the nodes 𝑒𝑖 represent the nodes 

of random variables indicating the i-th node is present in the graph. A path in a graph is a sequence of alternating 

adjacent nodes and the links joining them, beginning and ending with a node. Therefore, when a path to the end 

of the reliability block diagram exists through the sets of operating nodes/units, then the system is working 

properly. A path is referred to as minimal if it contains no proper subset that is also a path connecting the same 

two nodes. As a result, the set of minimal paths defines the set of operating units that ensure the operation of 

the whole system. Since there can be several minimal paths, 𝜋1, … , 𝜋𝑛𝑝
, the system functions when at least one 

path is available, so the (upper bound of) reliability of the system is:   

𝑃𝑈𝐵(𝜑(𝒆)) = 1 − ∏ [1 − ∏ 𝑃(𝑒𝑖 = 1)𝑖∈𝜋𝑘
]

𝑛𝑝

𝑘=1
 (1) 

A cut is a set of nodes and links whose removal from the graph disconnects the two nodes, so the sets of 

minimal cuts connect the sets of units whose failure results in the failure of the whole system. Namely, the 

system fails if at least one of the minimal cuts consists entirely of non-functioning units. Since several cut sets 

can exist,  𝜗1 , … , 𝜗𝑛𝑐
, and the lower bound of the reliability of the system is: 

𝑃𝐿𝐵(𝜑(𝒆)) = ∏ [1 − ∏ [1 − 𝑃(𝑒𝑖 = 1)]𝑖∈𝜗𝑘
]

𝑛𝑐
𝑘=1  (2) 

Note that the minimal path set of the example shown in Figure 2 is {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}}, while 

the minimal cut set is {{1}, {2}, {3}, {4, 5, 6}}. 

Table 1: Minimal path set generation algorithm  

# Function Minimal Path Set Generator ( (m, o): P-graph ): minimal path sets 

01: begin 
02: min-path-sets := ∅ 
03: subproblems := {(𝑃, ∅, ∅, ∅)}; 
04: while subproblems ≠ ∅  do 
05: let (𝑝, 𝑝+, 𝑜+, 𝑜−) ∈ subproblems, where cardinality (𝑜+) is minimal 
06: subproblems := subproblems \ (𝑝, 𝑝+, 𝑜+, 𝑜−); 
07: if 𝑖𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑜+, 𝑚𝑖𝑛-𝑝𝑎𝑡ℎ-𝑠𝑒𝑡𝑠 ) then 
08: if 𝑝 = ∅ then 
09: min-path-sets := min-path-sets ∪ {(𝜓(𝑜+), 𝑜+)}; 
10: else 
11: SubProbGen( (𝑝, 𝑝+, 𝑜+, 𝑜−), 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠); 
12: end if 
13: end if 
14: end while 
15: return min-path-sets; 
16: end; 
17: Function SubProbGen( (𝑝, 𝑝+, 𝑜+, 𝑜−): 𝑠ubproblem, subproblems: set of subproblems) 
18: begin 
19: let 𝑥 ∈ {�̂�| �̂� ∈ 𝑝 and (𝑝, 𝑝+, 𝑜+, 𝑜−) ∈ 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 and |𝜑−({�̂�})| 𝑖𝑠 minimal}; 
20: 𝑜𝑥 ≔ 𝜑−({𝑥}) \ 𝜊−; 𝑜𝑥𝑏 ≔ 𝑜𝑥 ∩ 𝑜+;  𝐶 ≔ ℘(𝑜𝑥\ 𝑜𝑥𝑏); 
21: if (𝑜𝑥𝑏: = ∅) then 
22: 𝐶 ≔ 𝐶 \ {∅}; 
23: end if 
24: for all 𝑐 ∈ 𝐶 do 
25: subproblems := subproblems ∪ ((𝑝 ∪ 𝜓−(𝑐)) \  𝑝+ \ {𝑥} \ 𝑅, 𝑝+ ∪ {𝑥}, 𝑜+ ∪ 𝑐,  

26:                 𝑜− ∪ (𝑜𝑥 \  𝑜𝑥𝑏 \ 𝑐 ) ); 
27: end for 
28: end; 
29: Function isFeasible(𝑜+: set of operating units, 𝑚𝑖𝑛-𝑝𝑎𝑡ℎ-𝑠𝑒𝑡𝑠: set of minimal paths): bool 
30: begin 
31: for all (𝑚, 𝑜) ∈   𝑚𝑖𝑛-𝑝𝑎𝑡ℎ-𝑠𝑒𝑡𝑠 do 
32: if (𝑜+ ⊆ 𝑜) then 
33: return false; 
34: end if 
35 end for 
36: return true; 
37: end; 
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In Table 1 an algorithm is presented which can automatically generate the minimal path sets. For the formal 

description of the minimal path set generation algorithm and its optimisation the following notations were 

introduced: 

• 𝜓−(𝑜) yields the set of materials of a process structure, each of which is an inlet to at least one operating 

unit given in set 𝑜. Formally: 𝜓−(𝑜) = ⋃ 𝛼(𝛼,𝛽)∈𝑜 .  

• 𝜓+(𝑜) yields the set of materials of a process structure, each of which is an outlet from at least one operating 

unit given in set 𝑜. Formally: 𝜓+(𝑜) = ⋃ 𝛽(𝛼,𝛽)∈𝑜 .  

• 𝜓(𝑜) yields the set of materials of a process structure, each of which is either an inlet to or an outlet from 

at least one operating unit given in set 𝑜. Formally: 𝜓(𝑜) = 𝜓−(𝑜) ∪ 𝜓+(𝑜). 

• φ−(𝑚) yields the set of operating units of a process structure, each of which produces some materials 

found in set 𝑚 as its outlets. Formally: φ−(𝑚) = {(𝛼, 𝛽) ∈ 𝑜: 𝛽 ∩ 𝑚 ≠ ∅ }.  

The reliability of the entire system can be characterised by a polynomial expression, as the reliabilities are 

multiplied when the elements are connected by ‘AND’ connections, while logical ‘OR’ connections aggregate 

the different sets. As an increase in the reliability of the system by introducing redundant elements is desired, 

the above equation can be written as follows:  

𝑃𝑈𝐵(𝜑(𝒆)) = 1 − ∏ [1 − ∏ 1 − [1 − 𝑃(𝑒𝑖 = 1)]𝑑𝑖
𝑖∈𝜋𝑘

]
𝑛𝑝

𝑘=1
, or (3) 

𝑃𝐿𝐵(𝜑(𝒆)) = ∏ [1 − ∏ [1 − 𝑃(𝑒𝑖 = 1)]𝑑𝑖
𝑖∈𝜗𝑘

]
𝑛𝑐
𝑘=1 ,  (4) 

where 𝑑𝑖 represents the number of units. 

The evaluation of the risk associated with the failure of the system requires the calculation of the economic 

consequence of equipment failures. In our study, the cost of the required maintenance cost (MC) and the cost 

of the production loss (PL) were calculated: 

𝑀𝐶 = 𝐶𝑓𝑚 + 𝐷𝑇 ⋅  𝐶𝑉,  (5) 

𝑃𝐿 = 𝐷𝑇 ⋅ 𝑃𝐿𝑃𝐷,  (6) 

where 𝐶𝑓𝑚 stands for the fixed cost of maintenance ($), 𝐷𝑇 denotes the downtime (number of days), 𝐶𝑉  

represents the variable cost of maintenance per day ($ d-1), and PLPD is the production loss per day  

($ d-1). The risk of each subsystem is the product of its failure probability and consequences of failure. 

Based on this loss function and the polynomial reliability of the model, the following risk function can be 

determined, where 𝑜∗ represents the set of materials and operating units involved in the optimal solution:  

∑ (𝑐𝑓𝑚𝑖 + 𝐷𝑇𝑖 ⋅ 𝐶𝑉𝑖) ⋅ (1 − 𝑃(𝑒𝑖 = 1)) + (𝐷𝑇𝑖 ⋅ 𝑃𝐿𝑃𝐷𝑖) ⋅ (1 − 𝑃(𝑒𝑖 = 1))
𝑑𝑖

 (𝛼,𝛽)=𝑜𝑖∈𝑜∗ ≤ 𝐿𝑖𝑚𝑖𝑡𝑟𝑖𝑠𝑘
𝑈𝑝𝑝𝑒𝑟

 ,  (7) 

whose risk is inversely proportional to the reliability of the system: 

𝑧∗ = 𝑃𝑈𝐵(𝜑(𝒆)) = 1 − ∏ [1 − ∏ 1 − [1 − 𝑃(𝑒𝑖 = 1)]𝑑𝑖
𝑖∈𝜋𝑘

]
𝑛𝑝

𝑘=1 .  (8)  

The risk always decreases by increasing the redundancy. However, the installation of additional components 

requires investment cost, resources for which are limited. As detailed information concerning the investment 

costs of the components is unavailable, the number of spare components is constrained:  

∑ 𝑑𝑖
𝑛
𝑖=1 ≤ 𝐿𝑖𝑚𝑖𝑡𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑈𝑝𝑝𝑒𝑟
  (9) 

Based on these variables, a nonlinear integer programming model was defined, where the 𝑧∗ objective function 

is maximised under the constraints related to the upper bound of the acceptable risk, 𝐿𝑖𝑚𝑖𝑡𝑟𝑖𝑠𝑘
𝑈𝑝𝑝𝑒𝑟

, and the 

number of spare components (available investment costs) 𝐿𝑖𝑚𝑖𝑡𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑈𝑝𝑝𝑒𝑟

.  

3. Case study 

The applicability of the proposed methodology is demonstrated using data from a real-life case study related to 

the reforming reaction system in Sinopec’s Luoyang Petrochemical Plant (Hu et al., 2009). The reliability and 

cost parameters of the subsystems of the process are given in Table 2.  

Instead of solving a process synthesis problem, in this study the P-graph of the process was obtained based on 

the success tree of the system (see Figure 3). Since the data were aggregated to the subsystems, the reliability-

redundancy allocation problem was also defined at this level (see Figure 4). 

Based on the P-graph, the path sets were determined by the proposed minimal path set generation algorithm. 

Because of the specific topology of the graph, the minimal path set contains all the activities in the graph, 
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therefore, 𝑃𝑈𝐵(𝜑(𝒆)) = ∏ 𝑃(𝑒𝑖 = 1)𝑖∈𝜋𝑘
= 0.009. The ‘Nonlinear optimisation by Mesh Adaptive Direct Search’ 

(NOMAD) black-box algorithm was used to solve this developed mathematical model. The algorithm defines a 

mesh with the discretisation of the space of variables and performs an adaptive search while the refinement of 

the meshes is also controlled (Audet and Dennis, 2006). The solutions were verified by BARON (Sahinidis, 

1996) which is a computational system for solving nonconvex optimisation problems to global optimality. The 

reliability of optimal solutions for different constraints is presented in Table 3. The results show that by increasing 

the available budget, the reliability of the system is also increased, however, the number of redundant elements 

comprehensively determines the total cost and reliability. The results illustrate that the proposed methodology 

is applicable with regard to the risk-based resource allocation in the design of process systems.   

Table 2: Reliability and cost parameters of subsystems (n=9) 

# Subsystem 
Reliability 

(𝑃(𝑒𝑖 = 1)) 
𝑐𝑓𝑚𝑖  ($) 𝐷𝑇𝑖  (𝑑𝑎𝑦) 𝐶𝑉𝑖  ($) 𝑃𝐿𝑃𝐷𝑖  ($) 

1 1st compressor subsystem 0.4208 2,173.9 1.5 144.93 43,478 
2 Heating-reaction subsystem 0.4011 7,246.4 5.0 289.86 43,478 
3 Heat exchanger subsystem 0.6088 2,898.6 3.0 289.86 43,478 
4 Cooler subsystem 0.6801 1,449.3 2.0 289.86 43,478 
5 Separation subsystem 0.9907 2,898.6 4.0 289.86 21,739 
6 Pump subsystem 0.5722 724.6 1.0 72.464 0 
7 2nd compressor subsystem 0.7874 1,449.3 1.0 144.93 0 
8 Absorber subsystem 0.6984 1,449.3 4.0 144.93 14,493 
9 Instrument subsystem 0.4141 724.6 1.0 72.464 0 

 

 

Figure 3: Success tree of reaction system published in (Hu et al., 2009) 

 

Figure 4: P-graph representing the subsystems of the reaction system. This figure also illustrates how 

redundancy is handled in the proposed framework  
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Table 3: Results of optimization 

# 𝐿𝑖𝑚𝑖𝑡𝑐𝑜𝑠𝑡
𝑈𝑝𝑝𝑒𝑟

 𝐿𝑖𝑚𝑖𝑡𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑈𝑝𝑝𝑒𝑟

 𝑑 = (𝑑1, 𝑑2, … , 𝑑9) 
Reliability of  
the system 

1 110,000 15 (2,4,2,2,1,1,1,1,1) 0.0568 
2 150,000 15 (2,3,2,1,1,2,1,1,2) 0,0879 
3 180,000 15 (2,2,2,2,1,2,1,1,2) 0,0947 
4 35,000 25 (5,6,4,3,1,1,1,3,1) 0,1514 
5 50,000 25 (3,6,3,3,1,2,2,2,3) 0,3922 
6 70,000 25 (4,4,3,2,1,3,2,2,4) 0,4563 

4. Conclusions 

In this paper, we presented a novel approach for safety-critical optimisation of process systems. To represent 

redundant process units and to calculate the reliability of the system we the added logical nodes to P-graphs. It 

was demonstrated that P-graphs extended by these logical condition units can be transformed into reliability 

block diagrams and based on the cut sets and path sets of the graph a polynomial risk model can be extracted. 

The cost function in terms of the reliability – redundancy allocation problem was formalised as nonlinear integer 

programming model, where the integers are the exponents of the polynomial model that represent the number 

of redundant units. With the help of the NOMAD algorithm, the reliability under the constraints related to the 

investment costs and the acceptable risks associated with the consequences of equipment failure and repair 

times was maximised. The applicability of this approach was illustrated by a case study related to a reforming 

reaction system. In our further work, how the time-dependent reliability of the units could be incorporated into 

the model and how the proposed toolset can be used for the prioritisation of the maintenance work will be 

focused on. 
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