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Chemical process plants can be interpreted as networks where energy mass and momentum are exchanged. 

Therefore, they can be represented as such using graph theory. This work presents a decomposition 

methodology that allows to conceptually deconstruct chemical process plants and their models to be 

represented by networks. By the selection of minimum constituent units of the plant, it is possible to describe 

the interdependencies among those minimum units. This procedure allows the correct representation of process 

plants as networks along with a detailed analysis of them. Using network metrics such as centrality measures, 

it was possible to analyze, as an example, the HDA process plant under two selected plantwide control 

strategies, allowing the identification of its more important units and controllers. This permitted an insight of how 

plantwide control strategies responded to perturbations from a qualitative point of view. It was also possible to 

establish the main coincidences and discrepancies between the selected plantwide control strategies. 

1. Introduction 

In the design and optimization of a chemical process plant, the main objective is to couple the different plant 

units to interact as much as possible in order to achieve the desired production and environmental goal (El-

Halwagi, 2012). While in the control system design, the main objective is to deal with unit to unit undesired 

interactions, by designing a control system that counteracts disturbances before they propagate from their 

source to other units (de Araujo et al., 2007). Along with data analysis of process plants, models have played a 

fundamental role in the design and control of processes. Once the desired model is constructed, its qualitative 

and quantitative analysis is not always simple. Process models are mathematically (non-linear) and structurally 

(a big number of components) complex. Nevertheless, the representation of chemical process models as 

networks can be useful. In general terms, a network is any system that admits an abstract mathematical 

representation as a graph. Nodes (vertices) identify the elements of the system and in which the set of 

connecting links (edges) represent the presence of a relation or interaction among those elements. Clearly, such 

a high level of abstraction generally applies to a wide array of systems (Barrat et al., 2008). 

Networks have been used widely for many applications in diverse fields of chemical engineering, such as 

dynamic process modelling (Mangold et al., 2005), diagnosis and fault detection (Zhang and Hoo, 2011), 

plantwide analysis (Preisig, 2009), process synthesis (Friedler et al., 1995), complex system study (Elnashaie 

and Grace, 2007), just to name a few.  

The extensive work on graphs in different application fields and especially on chemical engineering has 

motivated the adaptation and use of the methodology proposed by Gilles (1998) and Mangold et al. (2002) for 

the decomposition of process plants and their models, into control volume graphs. With the main purpose of 

obtaining representative graphs of process models that can be qualitatively analysed to infer non-trivial 

properties with the aid of network analysis, which is a well-established and quickly evolving discipline.   

                                

 
 

 

 
   

                                                  
DOI: 10.3303/CET1870014 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Restrepo J.B., Forero H.A., Alzate C.A.C., 2018, The analysis of chemical engineering process plants and their 
models represented by networks , Chemical Engineering Transactions, 70, 79-84  DOI:10.3303/CET1870014   

79



2. From models to graphs 

Any model needs a reference point, and the control volume provides it. A control volume is a defined region of 

three dimensional space, which has an associated Volume 𝑉 and surface 𝑆 (Hangos and Cameron, 2001). A 

control volume contains a static or moving fluid that interacts with everything outside itself through the control 

Surface 𝑆. 

For a model to be suitable to be represented as a network, it must be a deterministic model. A deterministic 

model represents the view of the modeler of the plant; it describes the containment of and the interactions 

between the different internal structural elements (Westerweele, 2003). The following identification steps are 

proposed as the first step to generate a graph from a chemical process and its process model.  

• The scope of the Model: The first step in the deconstruction and representation process would be to 

identify the scope of the model. The scope of the model will help to understand what is relevant to the 

model and will be a useful tool to discern what should be used in the construction of the graph and what 

not. 

• Boundaries: Once the scope of the model is identified, the next step is to identify the models boundaries, 

and to clarify which elements are inside and which elements are outside those boundaries (i.e., the 

environment or surroundings) or interact with elements outside those boundaries (e.g., convective flows 

coming from non-modelled units). 

• Control Volumes: Once the global boundaries of the model are clear, the next step would be to identify 

the internal boundaries of the model. Those internal boundaries, in this case, would be the modelled 

control volumes and the connection elements. Connection elements are elements that define the 

magnitude and direction of the flow of mass, energy, and momentum, elements such as pumps, 

compressors, valves, and weirs. A special case of connection element would be the boundary condition in 

a distributed parameter system. 

• Flows and dependencies: The last step would be to determine the state dependencies and direction of 

the mass, energy, and momentum convective and diffusive flows.  

Once each of the components and their relations are identified according to the above-mentioned steps, the last 

step is to assign each component the appropriate nodes and then dependending on the kind of relation 

identified, to state these relations by means of edges, straight edges for material, energy, and momentum flows; 

and curved edges to indicate state dependencies. This methodology is represented in Figure 1. 

For the case of distributed parameter models, which as their name suggests, incorporate the spatial variation of 

states within the control volume. They account for situations where the scalar field of the intensive quantities is 

both a function of time and position (Hangos and Cameron, 2001). These systems are described by partial 

differential equations (PDEs) or partial differential algebraic equations (PDAEs). The application of conservation 

principles to distributed parameter systems is based on the selection of a differential control volume. A 

distributed parameter model can be understood theoretically as an infinite succession of differential control 

volumes. In practice, it can be understood as a finite succession of finite control volumes along the spatial 

coordinates, e.g., a Plug Flow Reactor can be approximated by a succession of Continuous Stirred Tank 

Reactors. 

 

 

Figure 1. Steps for model deconstruction into graphs a) The model and its Surroundings b) material, energy, 

and information across the control surface c) Dividing the model into its constitutive control volumes d) Stating 

the flows between the control volumes e) Generating the graph. 
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3. Network analysis 

Complex network theory (Boccaletti et al., 2006) provides important tools to understand the role and importance 

of certain nodes within a specific network. Centrality measures (Koschützki et al., 2005) quantify the importance 

of certain nodes in a network. They have been widely used in diverse fields of application such as the study of 

AIDS (Borgatti, 1995), Neurology (Rubinov and Sporns, 2010), and Electrical network vulnerability (Wang et al., 

2010). The value of these centrality measures is that they can be applied to a wide number of real world systems 

modeled as networks, where information, matter, and energy or electricity are flowing through. Some of these 

measures make implicit assumptions about the way information flows through a network. Therefore, it is 

important to clarify which are those assumptions and when are they relevant to a certain purpose. 

3.1 Degree centrality (𝐂𝐃(𝐢)) 

The degree 𝑘𝑖 of a vertex 𝑖 is the number of edges in the graph incident on that vertex.  For directed graphs the 

in-degree (𝑘𝑖,𝑖𝑛) of the vertex 𝑖 is the number of edges arriving at 𝑖. While its out-degree (𝑘𝑖,𝑜𝑢𝑡) is the number of 

edges departing from i. The degree centrality can be interpreted as a measure of immediate effects. In the 

eventual case of a failure, nodes with a higher degree will be affected faster than nodes with a lower degree. 

3.2 Closeness Centrality (𝐂𝐂(𝐢)) 

The closeness centrality of a vertex i expresses the average distance of a vertex (measured by shortest paths) 

 to all others. It becomes an index of the probability that given a perturbation on a node j chosen randomly, the 

node i will be reached first. 

3.3 Betweenness centrality (𝐂𝐁(𝐢)) 

The Betweenness centrality (Freeman, 1979) is the number of shortest paths between pairs of vertices that 

pass-through a given vertex. Betweenness is conventionally thought to measure the volume of traffic moving 

from each node to every other node that would pass through a given node. Thus, it measures the amount of 

network flow that a given node controls (Borgatti, 2005)  

4. Case study: analysis of the HDA process with plantwide control 

The HDA process as described in Douglas (1988) contains a reactor, a furnace, a vapor-liquid separator, a 

recycle compressor, two heat exchangers, and three distillation columns. Two raw materials, hydrogen, and 

toluene are converted into the benzene product, with methane and diphenyl as byproducts. The HDA plant is 

non-linear, large scale, relative degree zero process, highly integrated and non-minimum phase (Herrmann et 

al., 2003). Therefore, it has been a testing bed of new methodologies of plantwide control. 

 

4.1 HDA Plantwide Control proposed by Luyben et al. (1998) 

In this plantwide control strategy, the control variables were chosen to control the inventory of all the components 

present in the process. The Hydrogen inventory is controlled by the pressure control of the recycle gas loop. 

The Methane inventory is controlled by the composition control of the recycle gas loop. The benzene inventory 

is controlled by the temperature control in the benzene column. The toluene inventory is controlled by the level 

control in the reflux drum of the toluene column. The diphenyl inventory is controlled by the temperature control 

in the toluene column. Besides the inventory control, other regulatory control loops are present and can be seen 

in Figure 2a. 

 

4.2 HDA Plantwide Control proposed by de Araujo et al. (2007a, 2007b) 

The objective of this plantwide control strategy is to achieve a self-optimizing control, where fixing the primarily 

controlled variables at constant set points indirectly leads to near-optimal operation. Flow control of the hydrogen 

feed rate, reactor inlet pressure with purge flow, flow control of the toluene feed rate, quencher outlet 

temperature with cooling flow from the separator; reactor inlet temperature with furnace heat duty, separator 

level using its liquid outlet flow rate to the distillation section (Figure 2b). A detailed discussion of the supervisory 

control layer can be found in de Araujo et al. (2007b). 
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5. Graph analysis 

Complex Networks (Figure 3) are obtained once both plantwide control schemes in Figure 2, are deconstructed 

into their constitutive control volumes with the considerations made in section 2. Each distillation column was 

modeled as an equilibrium stage operation which is deconstructed as a succession of control volume nodes 

(the trays) which are intermediated by flow restriction non-capacitive nodes (the weirs). The reactor was 

modelled as a succession of finite control volume nodes connected by weighted edges that add up to the 

residence time. Each controller is modeled as an information node, as each controller is assumed to be a 

Proportional Integral Derivative Controller (PID), they are interpreted as information capacitances. Heat 

exchangers, flash drums, distillation sumps and reflux tanks were all divided and represented as control volume 

nodes. All those deconstructed units together compose the graphs obtained Figure 3.      

Table 1. Metrics of the generated graphs 

Metric Value Value 

Number of nodes 209 204 

Number of links 407 397 

Avg. Node degree 1.95 1.95 

Avg. Path Length 21.69 19.78 

No. Shortest paths 39412 38210 

In degree γ  2.07 2.08 

Out Degree γ 2.11 2.12 

 

 

Figure 2. a) HDA plant with plantwide control proposed by Luyben et al. (1998) b) HDA plant with plantwide 

control proposed by de Araujo et al. (2007) 

5.1 Degree centrality analysis 

Using the techniques proposed in (Clauset et al., 2009), it was possible to obtain the scaling parameter (γ) for 

the in and out degree distributions (See Table 1). Many real-world networks such as the World Wide Web 

(WWW), the internet, social networks, citation networks and food webs; also adjust well to the power law (P(k) =

k−γ) with 2 ≤ 𝛾 ≤ 3 (Barabási, 2009). They are called scale free networks. 

5.2 Closeness centrality analysis 

When a plantwide control strategy is applied, controllers are added with the aim of maintaining certain process 

variables in desired values. In other words, a response system to perturbations is implemented. As stated before 

closeness centrality can be interpreted as an index of the expected time until the arrival of something flowing 

through the network. Although perturbations tend to propagate in multiple directions at the same time, for a short 

term after the perturbation, the use of the shortest path will suffice for the analysis (a similar assumption was 

made and proven true in Maurya et al. (2003)). 
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In Luyben et al. (1998) control strategy, the most central node is the level controller in the reflux tank of the 

toluene column, followed by the temperature controller of the furnace and the reflux pressure controller in the 

inlet mixer. As this strategy focuses on inventory control, the high centrality of this controllers shows that the 

probable initial response to random perturbations will be to maintain the toluene and hydrogen inventories. 

In de Araujo et al. (2007a, b) the most central controllers are located in the rectifying section of the benzene 

column, in the reactor section and in the top of the toluene column. The control strategies are centered on the 

probable first response on reaction efficiency, which is congruent with the economic analysis presented in de 

Araujo et al. (2007a). 

 

 

Figure 3. Complex Networks Closeness and Betweenness Analysis (a) de Araujo et al. (2007b, a) (b) Luyben 

et al. (1998) 

5.3 Betweenness centrality analysis 

As described before, the betweenness centrality of a node can be interpreted as the measure of the amount of 

network flow that a given node controls. For both strategies, most of the important controllers are in the product 

recovery section. Meaning that both plantwide strategies give high importance to product recovery and that two 

different control philosophies converge on the same objective. Araujo et al. (2007b, a) control scheme has 

important controllers in the reactor section with high betweenness centrality values, while Luyben et al. (1998) 

has only one. These results show that the de Araujo et al. (2007b, a) plantwide strategy is more balanced 

between the product purity control and the reaction zone control.  

6. Conclusions 

Two plantwide control strategies from representative authors in chemical engineering control were chosen to be 

analyzed. To do so, the HDA plant was deconstructed using the proposed methodology, and network metrics 

were applied to infer important properties of both strategies and of the plant itself. The first representative result 

was the characterization of the resulting networks as scale free. Scale free networks have the property of being 

robust against random failures but vulnerable to intentional attacks. Another important network property 

identified was that the average shortest path length is high, discarding this network as a small world network. 

This centrality measure allowed the identification of the reactor as the most important unit in the plant, the one 

that will be ultimately affected by anything that happens in the plant. The centrality analysis of both plantwide 
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control strategies can be used to formulate a methodology of inspection and controller maintenance, aimed 

toward the correct distribution of efforts to assure the correct functioning of the plant. 

The use of network analysis to qualitatively and quantitatively analyze process plants and process models is 

still in development. There are still many challenges to face such as the correct linking between the simulation 

and the network representations to obtain better results. Nevertheless, it is a promising analysis methodology 

that has given important results, and its study would bring important advances to engineering in general. 
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