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Demand estimation models are used for energy planning activities. Their primary function is focused on securing 

energy supply to final users using available resources in generation, transport and interconnection. Long-term 

planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The 

reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear 

modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations 

in curves or externalities, which increases the probability of an erroneous prediction.  Therefore, this research 

proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic 

variations. The study first documents current methodologies for the prediction of maximum power demand, as 

well as the current deficiencies in the used forecasts, A new model is then formulated with the application of 

neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the 

model comparison process, it was identified that the data obtained reflects the characteristics of demand 

behavior with an acceptable margin error equal to 0.5%.  

Keywords: Cascade-Forward Back Propagation; neural networks; peak power demand forecast; long-term 

demand estimation model.  

1. Introduction

Since the 1960s, the electric energy demand growth has generated a research focus trying to establish tools to 

estimate its factor for an accurate planning process.  Electrical power systems began to include tools to monitor, 

forecast and control power system operation to ensure its operating variables (Gellings, 2009). In 1970, the 

ARIMA model were developed aimed on identify, estimate and diagnose dynamic time series models. Today 

they are only a small part of what is commonly known as "Time Series Econometrics" but, without any doubt, 

they are one of the most widely used techniques in demand energy forecast (Maple, 2010).  

The demand energy forecasting techniques are a continue research area focused on provide an accurate 

estimation of energy resources (Lim et al., 2018). This has created two important trends: (1) Estimating non-

conventional generation participation capacities such as wind and solar energy to support demand requirements 

and (2) including externalities to estimate demand energy forecasting guarantying accurate values (Theo, et al., 

2017). These topics brought the use of artificial Neural Networks (ANN) as alternative to evaluate possible 

sceneries and not relate variables. ANN is used to estimate efficiency indicator in final users energy 

consumptions (Ahmad, et al., 2017).  

It should be noted that artificial neural network (ANN) applications can be used in different scenarios and case 

studies involving demand estimation and their modeling process variate according with the needs detected in 
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the case study, which implicates training. Also, to find a better solution can be used hybrid models that combine 

different artificial intelligence techniques. The works presented in Table 1 have been selected as reference of 

successful modeling integrating forecast scenarios and considering optimization techniques. 

Table 1. Forecasting techniques applied in regions considering artificial neural networks during the process. 

 

According with previous works, it can be assumed that the development of a demand energy forecasting model 

for a region must be preceded by works that evaluate the impact of several factors related to demand energy 

behavior in order to optimize and choose the adequate variables and its ranges according with the objective 

function and the estimation horizon (Szoplik, 2015). Other works such as (Chen, 2017) describe a power load 

forecasting algorithm based on empirical mode decomposition, however this method is still experimental.   

In Colombia, the demand electric energy forecast is econometric and it has a combination of techniques to 

estimate long-term demand scenarios. Since 2013, an Endogenous and Exogenous VAR Model was 

implemented to simplify the econometric analysis, reducing the number of equations considered in the model. 

This methodology has shown a high precision degree according to the UPME bulletin "Projection of Electric 

Energy Demand and Maximum Power in Colombia (UPME, 2017). Table 1 presents the follow-up to the Average 

Quadratic Error published by the UPME using the VAR model.  In Colombia, the projection process of energy 

demand and maximum power estimation consider macroeconomic, social and climatological variables being 

the Gross Domestic Product (GDP), population and average temperature respectively, forming a group of 

historical data considering a defined seasonality and a correlation between them, Table 2 presents the variables 

described above. However, the model does not consider externalities which can be a constraint towards an 

accurate estimation such as the oceanic Niño index, the fuel price variations.  

Country Reference  Forecast strategy  Contribution 

Greece 
(Ekonomou, 

2010) 

 multilayer perceptron model 

(MLP) 

 It is considered an appropriate solution of long-

term energy estimation using non-stationary data. 

Iran 
(Azadeh, et al.  

,2010) 

 Integrated fuzzy regression 

algorithm with non-

stationary data 

 Consider non-stationary scenarios using diffuse 

regression and compare with ARIMA models 

using non-linear optimization techniques. 

Poland 

(Szczecin) 

(Szoplik, 

2015) 

 
multilayer perceptron model 

(MLP) 

 Results showed that using MLP can be predicted 

the gas consumption at any time (day, month, 

season) for residential users and small industries. 

United  

Kingdom 

(Antenucci 

and 

Sansavini, 

2017) 

 
Stochastic Optimization 

Model considering security 

constraints 

 
Evaluation of optimal location of thermal (gas) 

generation plants considering scenario of high 

wind penetration applying N-1 criteria. 

Slovenia 
(Potočnik, et 

al., 2007) 

 Mixed models: linear and 

non-linear optimization 

 Estimate the cash flow from the risk model 

considering day-ahead dispatch.  

Turkey 

(Antenucci 

and 

Sansavini, 

2017) 

 

Swarm Particles 

 

A novel strategy to estimate the energy demand 

scenario for medium and long term.  

Turkey 
(Es, et al., 

2014) 

 

Feed-Forward back 

propagation. 

 Consider three scenarios for the Turkey energy 

demand. Compare results with the official forecast 

Turkey model MAED (Model for Analysis of 

Energy Demand).  

Turkey 

(Hotunoglu 

and 

Karakaya, 

2011) 

 

Colony Optimization 

 

Estimate of Turkey's net energy demand 

considering artificial neural networks (ANN) 

Turkey 

(Birim and 

Tümtürk, 

2016) 

 
Multiple Linear Regression 

(MLR) 

 Estimation is compared with a real case provided 

by TEIAS (Turkey energy transmission system 

Utility)  

Colombia 

(Sarmiento 

and Villa, 

2008)   

 Multi-Layer Perceptron 

(MLP) using training 

algorithm based on 

Backpropagation, and 

Radial Basic Function (RBF) 

 
Results obtained were realized for demand 

energy estimations in the region of Antioquia and 

Chocó. The use of ANN shows an accurate 

estimation.  
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Table 1. Average Quadratic Error between Demand Projection and Actual Demand (UPME, 2017). 

Period 
Nov 

2013 

Mar 

2014 

Jul 

2014 

Nov 

2014 

Mar 

2015 

Oct 

2015 

Jan 

2016 

Jun 

2016 

Oct 

2016 

Feb 

2017 

Mean Square Error 

Considering special big consumers (%) 
0,48 0,25 0,39 0,43 0,28 0,64 0,57 0,54 0,42 0,19 

Mean Square Error 

Without consider Special Big Consumers (%) 
0,40 0,16 0,19 0,21 0,15 0,14 0,38 0,29 0,19 0,13 

 

In Colombia has been registered research projects using ANN to estimate the energy demand growth. In 

(Sarmiento and Villa, 2008) is showed an energy optimization to estimate energy resources using Multi-Layer 

Perceptron (MLP) with Backpropagation and Radial Basic Function (RBF) algorithm as is presented in Table 1. 

Other works such as (Daza-Guzman et al., 2016) and (Ojeda-Camargo, et al., 2017) use energy demand models 

based in UPME scenarios.  

Table 2. macroeconomic, social and climate variables used in the projections (UPME, 2017). 

2. Methodology 

In order to develop the demand electric energy forecast algorithm were considered three phases. (2.1) The 

selection of variable used as input data, (2.2) the algorithm model selected and (2.3) the comparison process 

used during the research.  Variables used in this paper represent the Caribbean Coast Region of Colombia.  

2.1 Input data 

The information used on the demand forecasting model considered economic, social and climatological 

variables which represent the region. The Gross Domestic Product (GDP) which is related in Table 2. The social 

variables selected are number of habitants (THabCar), total number of dwellings (TVivCarb) and total number 

of homes (THogCarb). Table 3 shows social variables.  

Table 3. Social variables considered in the model (UPME, 2017). 

Year THabCar TVivCarb THogCarb 
 

Year THabCar TVivCarb THogCarb 
 

2006 9147630 1959593 2016092  2012 9948531 2265588 2330140 

2007 9276497 2006443 2063893  2013 10086980 2319642 2385848 

2008 9407859 2056074 2114689  2014 10226181 2374161 2442046 

2009 9540456 2107381 2167331  2015 10365692 2429013 2498593 

2010 9674611 2160051 2221464  2016 10506651 2486913 2558269 

2011 9811070 2212277 2275222  2017 10647346 2544345 2617462 

 

In addition to the economic and social variables presented above, the climatological variable selected has equal 

importance and they are related to the consumption energy in the region. The two climatological variables used 

in this research, The first is the monthly historical average temperature of the Colombian Caribbean region with 

Year 

GDP  

(Millions of 

USD) 

Average temperature in 

Interconnected Electrical 

System  

Population  

Annual Growth (%) 

GDP Temperature Population 

2018 194 24,00 49.469 3,66% -0,35% 0,82% 

2019 201 24,01 49.856 3,92% 0,01% 0,78% 

2020 209 24,10 50.229 3,93% 0,40% 0,75% 

2021 218 24,22 50.587 3,99% 0,47% 0,71% 

2022 227 24,26 50.931 4,13% 0,17% 0,68% 

2023 236 24,19 51.261 4,07% -0,29% 0,65% 

2024 246 24,22 51.576 4,09% 0,14% 0,62% 

2025 256 24,26 51.878 4,08% 0,16% 0,58% 

2026 266 24,27 52.165 4,10% 0,02% 0,55% 

2027 277 24,33 52.439 4,05% 0,26% 0,52% 

2028 288 24,36 52.698 3,94% 0,13% 0,49% 

2029 299 24,32 52.944 4,03% -0,14% 0,47% 

2030 311 24,30 53.175 4,01% -0,09% 0,44% 
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a monthly seasonality showed in Table 2 and the second is the oscillation of the Oceanic Niño Index (ONI) 

which generally has a five-year seasonality, with a 3 month running mean temperature value variation (NOAA, 

2018).  

2.2 ANN model 

For the energy demand forecast was used MATLAB. The Feed forward and Cascade forward consider the back-

Propagation algorithm. It consists on the learning of a predefined set of a pair of input and output given as 

example: first, an input pattern is applied as a stimulus for the first layer of the neurons in the network, it is 

propagated through all the upper layers until an output is generated, the result in the output neurons is compared 

with the desired output and an error value is calculated for each output neuron. These errors are then transmitted 

backwards from the output layer to all the neurons in the middle layer that contribute directly to the output. This 

process is repeated, layer by layer, until all the neurons in the network have received an error, describing their 

relative contribution to the total error. Based on the value of the received error, the connection weights of each 

neuron are readjusted. For that reason, the next time the same pattern is presented, the output is closer to the 

desired one (Valencia Reyes, et al., 2006).  

The importance of the backpropagation network algorithm is the ability to self-adapt the weights of the neurons 

in the middle layers to learn the relationship between a set of input patterns and their corresponding outputs.  A 

variation of the feed-forward scheme is the Cascade-Forward, which contains an additional input of the input 

data at the output layer showed in Figure 1 (MATLAB, 2018). 

 

 

Figure 1. Cascade forward back Propagation 

2.3 Training and Evaluation 

The Neural Network selection process was divided into three phases: training, simulation and evaluation. For 

the purpose of finding the optimal performance. First, 96 neural networks were created, only 30 networks 

successfully converged, showing a better performance of the networks trained with the TRAINLM function with 

97% of the total success. The networks trained with the TRAINLM function were evaluated against another 

group trained with the TRAINGDM function, obtaining similar results. From 96 neural networks only 28 

converged, all trained with the TRAINLM training function. In addition, The networks with better simulations 

results had TANSIG and LOGSIG as Transfer function, in addition to the PURELIN function as output function 

(MatLab, 2016).The neuronal network models obtained will be compared with the current models of maximum 

power demand projection implemented by the UPME (UPME, 2017).  

3. Results 

Using the ANN Cascade-Forward backpropagation, 115 successful networks (90%) were identified, defining the 

effective network type for the projection, the number of layers and the number of neurons per layer, as well as 

the training functions. Finally, the five neural networks that obtained the best simulation performance were 

selected, demonstrating a correlation close to 1 and a low mean square error in comparison with the other 

networks. The mean quadratic error is shown in Table 4.  

Figure 2 represents the simulations made of the neural networks, projecting the growth of the maximum demand 

of electrical power for the Caribbean area from 2017 to 2032, on average the 5 networks reported an annual 

growth of 3.53% and by 2032 the total demand of power would have increased by 43.2% with respect to 

december 2017, going from 2100 MW to 3700 MW. 
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Table 4. Regression and Mean Quadratic Error in Neural Networks results. 

Scenario 

Tittle  

Annual Growth (%) MSE 

Training Validation Test Correlation (R) 

network124 0.995050 0.977450 0.979920 0.990480 1.16357E+14 

network113 0.991100 0.988540 0.987860 0.989950 1.22374E+14 

network98 0.990570 0.986820 0.979820 0.988960 1.3418E+14 

network90 0.990370 0.980100 0.986990 0.988570 1.38648E+14 

network99 0.990030 0.984750 0.987210 0.988530 1.454E+14 

 

 

Figure 2. Projection of Maximum Power Demand using Neural Networks from 2017 to 2032 in the Caribbean 

Coast Region of Colombia.  

 

It was selected the “network 124” because it had the smallest quadratic error and it is compared with three 

scenarios (high, mid and low energy demand scenarios) proposed by UPME in (UPME, 2017), considering the 

Colombian Caribbean Coast Region energy demand. Comparing energy demand forecasting with real demand 

there was identified that the estimation error in Network 124 (0.4%) was not higher than UPME estimation 

(1.5%). Table 5 describe compared result of UPME forecasting with the Network 124 considering low, medium 

and high energy demand scenario.  

Table 5. UPME Percentage error result of energy demand forecasting vs. Neuronal Networks considering low, 

medium and high scenario. 

Forecasting 2017 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec mean 

Low Scenario UPME 0.2% 4.8% 4.5% 9.3% 10.3% 8.6% 7.6% 8.5% 7.3% 10.6% 8.1% 5.8% 7.1% 

Low Scenario Network 124 -0.3% 1.8% 6.8% 7.3% 9.1% 7.7% 7.6% 12.1% 1.5% 10.8% 6.8% 3.0% 6.2% 

Medium Scenario UPME -5.8% -0.9% -1.3% 3.9% 5.0% 3.1% 2.0% 3.0% 1.8% 5.2% 2.6% 0.1% 1.6% 

Medium Scenario Network 124 -6.3% -4.1% 1.2% 1.7% 3.6% 2.1% 2.1% 6.8% -4.4% 5.4% 1.2% -2.8% 0.5% 

High Scenario UPME -12.2% -6.9% -7.3% -1.9% -0.7% -2.7% -3.8% -2.8% -4.1% -0.5% -3.2% -5.9% -4.3% 

High Scenario Network 124 -12.7% -10.4% -4.7% -4.2% -2.1% -3.7% -3.8% 1.2% -0.6% -0.3% -4.7% -8.9% -5.4% 

4. Conclusions 

The Caribbean Coast Region Energy Demand was considered as a case study to evaluate the proposed 

algorithm to forecast energy demand using ANN with a Cascade-Forward backpropagation algorithm. During 

the comparison process, it was identified that the data obtained reflects the characteristics of demand behavior 

with an acceptable margin error to 0.4%. In general, the best neural network modeled “Network 124” showed 

an error equal to 0.4%, from the total low, medium and high scenarios evaluated in 2017. The percentage error 

of the UPME maximum power demand regional projection was 1.5% clearly evidencing the behavior of the two 

projection methodologies and demonstrating the applicability of ANN to represent demand energy forecasting 

accurately. On the other hand, the neuronal network projection allows planners to anticipate typical and atypical 

events such as growth and seasonal changes as the case of the Oceanic Niño Index (ONI).  
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