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The purpose of this study is to estimate the carbon emission performance and time trend of the extractive 

industry in China. In this paper, the stochastic frontier analysis was used to analyse the carbon emission 

intensity and estimate the potential of carbon emission reduction in this industry. Besides, the stochastic 

convergence model was applied to measure the difference of carbon emission intensity in this industry and 

test the time trend of carbon emission convergence. Finally, it’s concluded that at present, firstly, the carbon 

emission efficiency of the extractive industry takes a slowly rising trend, with greater potential for 

improvement; secondly, there exists the gap in carbon intensity between the sub-industries of the extractive 

industry, without any convergence trend. This reveals that the effective way to reduce carbon emissions of 

extractive industry is to narrow down the interindustry gap in carbon intensity. 

1. Introduction 

1.1 Research purposes 

With the energy and environment pressure increasing, the low-carbon road is an inevitable choice for China’s 

economic development in the future. China clearly puts forward the goal of carbon emission reduction by 

2020. By then, the unit GDP will drop by 40-50% compared with 2005. In the Thirteenth Five-Year Plan for 

National Economic and Social Development, it’s proposed that CO2 emissions will reach its peak around 

2030, and the carbon emissions per unit of GDP in 2030 will be 60%-65% lower than those in 2005. Non-

petrochemical energy will account for about 20% of primary energy consumption (Lu et al., 2010). The 

extractive industry is a large carbon emitter in the energy consumption of all industries and is one of the 

traditional high-carbon industries. In order to fulfil the tasks of energy conservation and emission reduction and 

reduce the carbon emission intensity, it is necessary to effectively evaluate the carbon emission performance 

of the extractive industry. 

1.2 An overview of carbon emission efficiency 

Carbon emission efficiency refers to the economic benefits from the carbon emissions caused by the activities 

of social economy entities. There are two types of indicators about the carbon emission efficiency: single 

factor efficiency indicator and total factor efficiency indicator (Herrala and Goel, 2012; Bretschger et al., 2011). 

The former means the ratio of total carbon emissions to one certain factor, such as CO2 emissions per unit of 

energy consumption or carbon emissions per unit of GDP (Hermeling et al., 2013; Fischer and Springborn, 

2011). This indicator has a diversity of ratios, ignoring the relationship between other factors of economic 

activity and carbon emissions, with low precision. The latter refers to the economic effects based on the 

maximum expected output and minimum carbon emissions in the given conditions of input factors and 

technological endowments; actually, it means to calculate the technical efficiency of the decision unit under 

the constraints of carbon emissions.  
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2. Measurement method of carbon emission efficiency  

Determining the production frontier boundary is the key to the measurement of technical efficiency. In this 

paper, the stochastic frontier analysis (SFA) was adopted, which is the production function of cross-sectional 

data independently proposed by Aigner et al. (1977) and Meeusen and Broeck (1977). Based on this function, 

Battese and Coelli (1995) made some improvements to process panel data and expand the application scope 

of model. Therefore, this paper selects this model to measure the carbon emission efficiency: 
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Y is the output, x the input vector, and β the estimated parameter. The error term is the complex structure. Let 

vi and ui be the same as above, z is the variable that affects the technology inefficiency, and δ is the 

coefficient vector of the influencing factor. In order to reduce the risk of estimation bias by the production 

function error, the more flexible production function was selected in this paper. Taking the total industrial 

output (Y) as output and carbon dioxide (CO2), labour (L) and capital (K) as input, formula (1) can be further 

expressed as 

itititit

itititit

ititit

itititit

uvInLInK

InLInCOInKInCO

InLInKInCO

InLInKInCOInY









)()(

)()()()(

)()()(

9

2827

2

6

2

5

2

24

32210









                                                                      (2) 

Subtracting In CO2 from both sides of formula (2), it’s given as: 
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Let yit=Yit/CO2, the carbon emission efficiency is defined as the ratio of the expected output per unit of CO2 

output to the expected value of the production frontier boundary, i.e.: 
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Formula (4) shows that the carbon emission efficiency value is between 0 and 1. The closer to 1, the higher 

the efficiency, and being equal to 1 means that it reaches the boundary of the production frontier and the 

existing technology is fully utilized (Ang, 2005; Ang et al., 1998). The parameters to be estimated in the 

formula were calculated using the simultaneous likelihood estimation method. The measurement software was 

Frontier4.1. 

3. Data selection and empirical results  

According to the methods in the IPCC Guidelines for National Greenhouse Gas Inventories (2006), the carbon 

emissions of various sub-industries in extractive industry is calculated by the product of various energy 

consumption and the corresponding CO2 emission factor; the sample period is from 2007 to 2015; There are 

seven types of energy: coal, coke, gasoline, kerosene, diesel, fuel oil and natural gas. The CO2 emissions is 

calculated as: 

  )(2 jijtit EFECCO
                                                                                                                            (5) 

where, CO2it is the total carbon emissions of i industry in t year; ECijt is the standard coal consumption of j 

industry in i year; EFj is the carbon emission factor of energy j. Standard coal and CO2 conversion standard 

coefficients for various energy sources are as follows Table 1. 
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In this paper, the input variables included CO2 emissions, capital investment (net fixed assets), and labour 

input (average number of all employees) in the extractive industry; the output indicators were the main 

business incomes of various industrial sectors. According to the industry classification of China Industrial 

Economic Statistics Yearbook (2007-2015), the extractive industry is divided into seven sub-industries. A total 

of 410 observed values/sub-industries were collected. 

Table 1: Standard Coal and CO2 Conversion Coefficient for Various Energy Sources 

Energy Types 
Standard Coal Conversion Coefficient 

(kg Standard Coal/kg) 

CO2 Emission Factor 

(kg/Standard Coal) 

Coal 0.714 2.791 

Coke 0.974 3.134 

Petrol 1.471 2.039 

Kerosene 1.471 2.039 

Diesel Oil 1.457 2.168 

Fuel Oil 1.429 2.265 

Gas 1.330（kg/Standard） 1.624 

Note: The converted standard coefficient of coal was derived from the China Energy Statistical Yearbook 

2014, and the CO2 emission factor was calculated by IPCC (2006). 

Table 2: Variable-definition 

Variable Symbol Definition 

Industry Output Y Main Business Income ($100 million), 2007 as The Base Year 

Labour Input L Employees at the end of the year (tens of thousands of people) 

Capital Input K Net Annual Fixed Assets ($100 million), 2007 as The Base Year 

Carbon Dioxide CO2 Carbon Dioxide Emissions (Million Tons) 

Based on the stochastic frontier model, the simultaneous maximum likelihood estimation was made for the 7 

sub-industries in the extractive industry from 2007 to 2015 to obtain the calculated results of the parameters to 

be estimated as shown in Table 3 (calculation results are retained as 3 decimal places). 

Table 3: Regression result of carbon emission result in China's industrial sector 

variable Coefficient (T value)  variable Coefficient (T value)  

β0 3.058***(9.004) β5 -0.302***(5.401) 

β1-1 -1.947***(11.497) β6 -0.094**(2.074) 

β2 0.558***(5.221) β7 -0.127***(3.911) 

β3 0.771***(3.246) β8 -0.233***(4.990) 

β4 0.574***(12.875) β9 0.179***(2.215) 

σ2           0.703***(12.817) 

γ           0.842***(5.004) 

Log function value       998.024 

Note: The t-statistics are indicated in parentheses, and ***, **, and * indicate rejection of the null hypothesis at 

the significant levels of 1%, 5%, and 10% respectively. 

According to Table 3, the coefficient (β1-1) is -1.947, indicating that as the carbon emission scale increases, 

the carbon emission efficiency gradually decreases. The ranges of the values (β1~β6) and the coefficient 

symbol are in accordance with the economic implication and statistical significance. In addition, the γ value 

was 0.842, which was significant at the 1% level, with the satisfactory fitting degree, indicating that the 

inefficiency of carbon emissions is the main reason that the extractive industry deviates from its production 

frontier. 

Table 4 shows that in the extractive industry of China, the carbon emissions from mining and washing, oil and 

gas extraction, and other mining industries are highly efficient, with carbon emission efficiency above 0.8; in 

the non-ferrous mining and non-metallic mining and dressing, the carbon emission efficiency is the lowest, 

which does not exceed 0.5, with the difference of about 0.3 from the highest three industries. This indicates 

that there are great differences in the carbon emission efficiency of various sub-industries in the Chinese 

extractive industry. Also, the overall carbon emission efficiency of the industry in Chinese extractive industry is 

approximately 0.61 to 0.74 every year, that is, the annual carbon emission reduction potential is approximately 

24% to 39%. From Fig.1 (carbon emission efficiency of various sub-industries in the extractive industry), it can 
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be seen that, in addition to the auxiliary industries for extraction, the carbon emission efficiency of other 

industries shows a gradual upward trend from 2007 to 2015. The entire extractive industry rose from 0.617 in 

2007 to 0.737 in 2015, a slight decrease from 2011 to 2013. According to the above data analysis, the overall 

efficiency of the industry is not high and the increase is small and unstable(Springmann et al., 2015). There is 

a huge space for carbon emission reduction. Therefore, the carbon emission efficiency of the extractive 

industry, especially non-ferrous mining and non-metallic mining and dressing should be improved. It is of great 

significance for the extractive industry to take the “green” sustainable path of energy conservation and 

emission reduction. 

Table 4: Carbon Emission Efficiency in Various Industries 

 2006 2008 2009 2010 2011 2012 2013 2014 2015 

Mining and Washing of Coal 0.801 0.827 0.892 0.801 0.881 0.877 0.865 0.880 0.887 

Petroleum and Natural Gas 0.809 0.804 0.811 0.869 0.842 0.884 0.854 0.865 0.870 

Ferrous Metal Ores 0.414 0.447 0.481 0.524 0.568 0.506 0.533 0.593 0.590 

Non-Ferrous Metal Ores 0.515 0.491 0.528 0.516 0.581 0.549 0.552 0.564 0.591 

Nonmetal Ores 0.817 0.804 0.821 0.807 0.857 0.864 0.860 0.871 0.902 

Support Activities Mining 0.413 0.424 0.416 0.485 0.491 0.410 0.496 0.451 0.424 

Mining of Other Ores 0.801 0.817 0.827 0.834 0.858 0.905 0.911 0.922 0.928 

All Industry 0.617 0.621 0.610 0.635 0.665 0.670 0.658 0.710 0.737 

 

Figure 1: Carbon emission efficiency of various sub-industries in the extractive industry 

4. Analysis for stochastic convergence of carbon emission efficiency in various sub-
industries of extractive industry  

Stochastic convergence is to test whether one variable has a persistent impact on another variable. It 

effectively solves the problem whether there exists the convergence in the short term (Shrestha & Timilsina, 

1996; Torvanger, 1990). Assuming that the relative carbon intensity of each industry tends to its respective 

compensating-differentials-equilibrium level over the long term, and it does not change over time, then, the 

relative carbon intensity RCI (relative carbon intensity) of each industry at time t can be written as the sum of 

RCIe and ut: 

t

e

t uRCIRCI                                                                                                                                           (6) 

tt vtvu  0                                                                                                                                           (7) 

where, RCIe is the equilibrium level that does not change with time; ut is the deviation degree of the relative 

carbon emission from the equilibrium level, which is decomposed into a definite linear trend and stochastic 

process; v0 is the initial deviation of the carbon emission intensity from the equilibrium level, and β is the 

deterministic convergence rate. Then, the formula (6) is re-written as: 

tt vtRCI                                                                                                                                        (8) 
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where, α=RCIe+v0. If RCIt doesn’t have a unit root, then the impact on RCIt is only temporary, and will still 

return to its compensating-differentials-equilibrium level in the long term, indicating that the carbon emission 

intensity of the industry is randomly converged. In this paper, based on the method of Evans & Krass (1996) 

and Carlino & Mills (1996), it’s assumed that for each industry, at n=1, 2, ∙∙∙∙∙∙; if and only if the difference 

between the carbon emissions degree ynt of n industry in year t and the average y*
t of the carbon emissions of 

all industries during the year t is the stable series, the carbon emission intensity of these n industries shows 

the convergence trend. 
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In formula (9), the convergence should be determined by whether the autoregressive parameter ρn is zero: if 

the carbon emission intensity between industries is convergent, then ρn is negative; if it’s divergent, then ρn is 

zero. The calculation formula for the relative carbon intensity RCI of various industries is: 
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According to the meaning of the above model, the test was made for the stochastic convergence of relative 

carbon emissions, i.e., whether there exists the unit root in formula (11). The unit root test is divided into two 

types: variable unit root test and panel data unit root test. The former includes IPS, ADF-Fisher, and PP-Fisher 

method; the latter includes ADF, PP, KPSS, DF-GLS, and MZ test method. Considering the short span of the 

sample periods in this paper, three test methods of IPS, ADF-Fisher and PP-Fisher, as well as the three lag-

periods were selected. The test results are as follows: 

Table 5: The Effect of Random Convergence Test 

 
test tatistic ADF-Fisher PP-Fisher 

IPS 
lag phase 1 2 3 1 2 3 

Mining and 

Washing of Coal 

statistics 

(p value) 

0.370 

(0.814) 

0.119 

(1.104) 

-1.372 

(0.955) 

0.694 

(0.776) 

-1.112 

(0.557) 

0.924 

(0.411) 
0.275 

Petroleum and 

Natural Gas 

0.472 

(0.377) 

0.527*** 

(0.078) 

0.825 

(0.772) 

0.831 

(0.901) 

0.533 

(0.718) 

-1.608 

(1.399) 
0.927 

Ferrous Metal 

Ores 

0.583 

(0.411) 

0.213 

(0.381) 

0.517 

(0.472) 

0.383*** 

(0.085) 

0.661 

(0.418) 

0.211 

(0.191) 
1.247 

Non-Ferrous 

Metal Ores 

0.745 

(0.660) 

-1.005 

(0.972) 

2.040 

(1.954) 

-1.044 

(0.992) 

1.005 

(0.976) 

1.124 

(1.104) 
-0.559 

Nonmetal Ores 
0.910 

(0.739) 

0.601 

(1.087) 

-1.546 

(1.322) 

0.492 

(0.329) 

0.339 

(0.514) 

-1.025 

(1.271) 
0.887 

Support 

Activities Mining 

1.244 

(1.071) 

0.183 

(0.204) 

-0.677 

(0.572) 

0.956 

(1.584) 

-0.947 

(1.224) 

0.223 

(0.190) 
0.351 

Mining of Other 

Ores 

1.314 

(1.124) 

1.280 

(1.214) 

-0.557 

(0.417) 

0.670 

(0.721) 

1.447 

(1.270) 

-0.417 

(0.625) 
-1.263 

All Industry 
0.743 

(0.698) 

-1.290 

(0.884) 

0.883 

(0.625) 

0.334 

(0.419) 

0.497 

(0.372) 

1.247 

(0.899) 
0.674 

Note: The lag order of the IPS indicator is determined by the AIC criterion. 

From the test results in Table 5, it can be seen that, except for the two-order lagging ADF-Fisher test in coal 

mining and washing industry and the 1-order lag PP-Fisher test in the non-ferrous mining industry, all test 

estimates at the significant level of 10% are consistent with the original assumption that there exists the unit 

root. Therefore, basically it can be judged that the seven sub-industries of the extractive industry in China do 

not have the time trend of stochastic convergence. This means that the carbon emission efficiency gaps in the 

sub-industries of the extractive industries will not be automatically eliminated in terms of overall or internal 

relations (Leontief & Ford, 1971). 
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5. Conclusions  

In this paper, the stochastic frontier analysis and stochastic convergence analysis were conducted to 

empirically test the carbon emission efficiency of the extractive industry in China and the differences between 

sub-industries. The following conclusions are made: 

Firstly, as a whole, the carbon emission efficiency of extractive industry is slowly rising, and there is room for 

further improvement. This means that in the Thirteenth Five-Year Plan in China, the extractive industry can 

achieve emission reduction targets under the condition that the industry output is further increased. The 

conclusion is in accordance with the view of Zhang et al. (2013). Second, within the extractive industry, there 

is a huge interindustry gap in carbon emission efficiency, and this gap has continued to widen. This indicates 

that in the process of carbon emission reduction, the costs paid by various industries are not the same, and 

then reducing the carbon intensity gap between industries is an effective measure to achieve the overall 

emission reduction target of the extractive industry. 
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