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The slag-based compound cementitious material (SBCCM) consists of five components, according to the 
traditional test methods for trial, the workload is very heavy, the efficiency is low. A least-squares mutual 
information (LSMI) method was created for feature selection of SBCCM. The paper used the LSMI feature 
selection to sort the importance of the material components, selected the three components that play an 
important role in the material, and then used the orthogonal test method to quickly test out the optimal ratio of 
the material. The LSMI is a regression-oriented method capable of solving difficult probability density 
problems. It sorts the importance of input features by their dependence on output values, thereby screening 
out important features. The results showed that the LSMI was an effective feature selection method, and it can 
greatly reduce the workload in the preparation of the SBCCM. 

1. Introduction 
Slag-based composite cementitious material (SBCCM) is prepared with as many as five components, 
including superfine slag powder, building plaster, lump lime, magnesia and sodium chloride. The traditional 
trial preparation method often results in a huge workload. To enhance the efficiency, this paper identified the 
key components of the SBCCM through feature selection, and then adjusts the amount of these components 
to obtain the best mixture ratio. 
Feature selection is an important data pre-processing method. By this method, a feature subset is selected to 
give full play to the related models and algorithms. One of the main application fields for feature selection lies 
in machine learning (Comon, 1994; Guyon and Elisseeff, 2003), In this field, the feature selection approaches 
include the linear regression model, the random forest, the support vector machine (SVM), etc. 
In the linear regression model, the features are selected by the regression coefficient. The feature importance 
is positively correlated with the regression coefficient in the model. Thus, the coefficient equals zero if the 
corresponding feature is irrelevant to the output variables. To prevent overfitting and enhance generalization, 
the linear regression model is often added with the penalty factors like L1/Lasso and L2/Ridge regression. 
However, this model only applies to the case that the features are linearly correlated with the output variables 
but independent from each other. It is difficult to make a good prediction with the model if the features are 
associated with each other. 
In the random forest, decision trees serve as the basic sorters, and the features are selected based on 
information gain or mutual information. Considering information gain, information gain rate and Gini coefficient, 
the random forest method is, in most cases, suitable for feature selection in classification problems. 
Nevertheless, the prediction accuracy may decline sharply in the evaluation of unimportant features. 
Our research tackles a regression-oriented problem, in which the features are associated with each other but 
rather limited in number. The abovementioned methods either underperform in the selection of interconnected 
features, or loss stability in the evaluation of unimportant features. Suffice it to say none of them are applicable 
to our problem. 
In light of the above, a least-squares mutual information (LSMI) method was created for feature selection of 
SBCCM. The LSMI is a regression-oriented method capable of solving difficult probability density problems 
(Kanamori et al., 2009; Van Hulle, 2005). It sorts the importance of input features by their dependence on 
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output values, thereby screening out important features. Here, this method is adopted to analyse the 
components of SBCCM and sort the importance of the components. 

2. LSMI feature selection 
2.1 Overview 

Mutual information (MI) refers to the relevance between two random variables, and the decrease in 
uncertainty of one random variable when the other random variable is given. If two random variables have no 
correlation, the MI will be 0; if one random variable eliminates the uncertainty of the other random variable, 
then the MI between them will be maximized. The maximum MI is called the mutual information entropy. 
Therefore, the MI not only determines the existence/absence of the correlation between two random variables, 
but also reflects the closeness of the correlation (Suzuki et al., 2009; Cover and Thomas, 1991; Kraskov et al., 
2004; Torkkola, 2003). 
For two random variables X and Y, their MI is defined as follows: 

                                                                                                            (1) 

where p(x,y) is the joint probability distribution function of X and Y; p(x) and p(y) are the marginal probability 
density functions of X and Y, respectively. The MI between parameters help to disclose the effect of each 
parameter on the overall strength of SBCCM. 
In actual computation, it is difficult to estimate probability density. Thus, the LSMI method was employed to 
calculate the density ratio directly, avoiding the estimation of probability density. The specific procedure is as 
follows: 

                                                                                                                                        (2) 

In analytical forms, the LSMI can compute the MI in an effective manner. To estimate the density ratio, the 
mean square error (MSE) of the MI is obtained as: 

                                                                                                                      (3) 

In this research, the components of SBCCM related to and interacted with each other. The LSMI method was 
adopted to ascertain to degree of association between these components, and the effect of one component on 
the uncertainty of another. 

2.2 Component sorting 

As mentioned above, SBCCM is prepared from superfine slag powder, building plaster, lump lime, magnesia 
and sodium chloride. During the sampling, the mass (g) of each component in 100g geopolymer was taken as 
the test basis. The 3d and 38d folding strength and compressive strength (MPa) were obtained for each of the 
five main components. According to the international standard, the 28d compressive strength was taken as 
the output value, as shown in Table 1 (9 out of the 36 samples are listed). 

Table 1: Measured data 

SN Nacl Magnesia Building 
plaster 

Lump 
lime 

Slag 3d folding 
strength 

3d compression 
strength 

28d folding 
strength 

28d compression 
strength 

1 2 8 5 5 80 3.56 8.93 4.69 21.34 
2 2 8 5 10 75 1.55 7.22 4.5 21.25 
3 2 8 5 15 70 0 8.63 6.05 27.36 
4 2 8 10 5 75 3.15 10.84 6.82 34.58 
5 2 8 10 10 70 0 5.53 3.09 20.4 
6 2 8 10 15 75 0 5.33 5.02 20.05 
7 2 8 15 5 70 3.47 7.69 3.94 19.7 
8 2 8 15 10 75 0 5.74 3.52 17.15 
9 2 8 15 15 60 0 4.67 2.98 16.78 

Four groups of measured data were chosen as test samples, converted to .txt files, and inputted into the LSMI 
model for evaluation. The importance ranking of the components (in descending order) is as follows: 
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Magnesia > building plaster > sodium chloride > superfine slag powder> lump lime 

3. Experiments and analysis 
To verify the performance of the LSMI feature selection, a prediction model was created to simulate all the 
features against the output. The five features were divided into important ones (magnesia, building plaster, 
sodium chloride) and unimportant ones (superfine slag powder, lump lime). The prediction model combines 
the ridge regression in machine learning with cross validation. 

3.1 Experiments 

First, all components of SBCCM were involved in the prediction, with the predicted performance score of 
0.828157483663, MSE of 0.593163876378 and RMSE of 0.770171329237. The predicted results are shown 
in Figure 1. 

      

Figure 1: Predicted results of all components         Figure 2: Predicted results of important components 

Then, three important components, namely, magnesia, building plaster and sodium chloride were involved in 
the prediction, with the predicted performance score of 0.850993506536, MSE of 0.514338774553 and RMSE 
of 0.71717415915. The predicted results are shown in Figure 2. 
Finally, the two unimportant components, including superfine slag powder and lump lime, were involved in the 
prediction, with the predicted performance score of -0.017261978477, MSE of 3.51137233852 and RMSE of 
1.87386561378. The predicted results are shown in Figure 3. 

 

Figure 3: Predicted results of unimportant components 
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3.2 Results analysis 

Table 2: Comparison of predicted results 

Feature combination Score Mse Rmse 
Magnesia, building plaster, NaCl, slag, lump lime 0.828 0.593 0.770 
Magnesia, building plaster, NaCl 0.851 0.514 0.717 
Slag, lump lime -0.017 3.511 1.874 

 
According to the results of the 3 experiments in Table 2, the LSMI selection of important features is valid and 
feasible for regression problem with correlated features. The prediction model produced with the three 
important features manged to improve prediction performance, reduce variance and MSE, and increase the 
predictive ability. On the contrary, the prediction model produced with the two unimportant features underwent 
a sharp decline in prediction performance, as the variance reached 3.5. 
From Figures 1, 2 and 3, it is observed that the prediction made according to important features is consistent 
with that made according to all features, while the prediction made according to unimportant features deviates 
greatly from that made according to all features. Therefore, it is meaningful to analyse the key components of 
SBCCM based on LSMI feature selection. 

4. Importance mechanism of SBCCM components 
In light of the foregoing analysis, some adjustments were made on magnesia, building plaster and sodium 
chloride. Based on Table 1, orthogonal tests were performed on magnesia with its content being 6, 8 and 10, 
building plaster with its content being 5, 10 and 15, and sodium chloride with its content being 0, 2 and 4. 
Finally, the optimal mixture ratio of SBCCM was obtained as: magnesia: building plaster: sodium chloride: 
lump lime: superfine slag powder = 8:10:2:5:75. 

4.1 XRD results and analysis 

In author’s papers (Liu et al., 2014; 2015), the XRD diffraction image showed that the hydration products of 
SBCCM included:  3CaO•Al2O3•(0.5CaCl2•0.5CaSO4)•12H2O (Calcium Aluminium Chloride Sulphate Hydrate) 
and Ca1.5SiO3.5•xH2O (Calcium Silicate Hydrate). In addition, the SBCCM also produced 
0.8CaO•0.2Na2O•Al2O3•3SiO2•6H2O (Unnamed zeolite), Mg9(SiO4)4(OH)2 (Magnesium Silicate Hydroxide) and 
Ca6Al2(SO4)3(OH)12•26H2O (Ettringite) after hydration. The silicon dioxide in superfine slag powder were too 
many to be consumed up in the reaction. Thus, the test block still contained substantive silicon dioxide. The F 
diffraction peak stands for the unreacted silicon dioxide in the superfine slag powder. 

4.2 Influence on strength from building plaster and sodium chloride 

The principal component of magnesia is magnesia, with hydrated products including M-S-H gel, Mg(OH)2, 518 
phase and 318 phase. It has two reaction paths: one is that the active magnesia directly produces Mg(OH)2 
under the alkaline environment and then reacts with reactive silica in the slag; the other is that active 
magnesia in the slag compound curing agent may have magnesium oxychloride cement reaction with Cl iron 
in NaCl to produce Mg(OH)2, 518 phase and 318 phase. 
1. Hydration reaction with the first path 
Calcium oxide in the slag compound curing agent produces calcium hydroxide through the following reaction: 

CaO+H2O=Ca(OH)2                                                                                                                                           (4) 

Active magnesia will have the following reaction: 

MgO+H2O=Mg(OH)2                                                                                                                                          (5) 

Mg2+ will first bond with OH- to produce Mg(OH)2 since Mg(OH)2 has a lower solubility than Ca(OH)2. It will 
react with active SiO2 dissolved in replacement of Ca(OH)2: 

Mg(OH)2+SiO2+H2O→M-S-H                                                                                                                            (6) 

2. Hydration reaction with the second path 
Magnesia and magnesium chloride solution will produce magnesium oxychloride compound, which has been 
studied by many scholars both at home and abroad. 
Different amount of magnesium chloride will produce different magnesium oxychloride compounds. 
MgO/MgCl2 mol ratio was used to represent the amount of magnesium chloride. When the amount of MgCl2 is 
small, the mol ratio is higher and vice versa. 
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Matkovio studied steady hydration products of magnesium oxychloride cement under different mol ratios. 
When MgO/MgCl2 was less than 4, the five-phase Mg3(OH)5Cl•4H2O was first produced, with instable 
property, and gradually developed into the triphase Mg2(OH)3Cl•4H2O with progress of duration. The lower the 
MgO/MgCl2 is, the faster the transformation speed will be. This is to say with increase in the amount of 
magnesium chloride, after the five-phase product was produced, substantive magnesium chloride would be 
left and reacted with Mg(OH)2 to produce Mg2(OH)3Cl•4H2O. Thus it can be seen that the great the amount of 
magnesium chloride is, the faster the triphase production speed will be. Therefore, to enable production of 
stable five-phase products produced by magnesium oxychloride cement, it is of vital importance to control the 
amount of magnesium chloride. 
When MgO/MgCl2 was greater than 6, which means the amount of magnesium chloride was small, the 
amount of magnesia was very high, the triphase product of Mg(OH)2 could also be produced under normal 
temperature. In the solution, however, substantive Mg(OH)2 would be left for reacting with the triphase to 
produce the five-phase products. Hence the five-phase products can only be stable when MgO/MgCl2 fell into 
the range of 4-6. 
Cole et al. also studied stability of hydration products of magnesium oxychloride cement in the air. They found 
out that the five-phase (Mg3(OH)5Cl•4H2O) or triphase (Mg2(OH)3Cl•4H2O) was instable in the air and could be 
carbonized by CO2 to produce Mg(OH)2•2MgCO3•MgCl2•6H2O. Walter-Levy pointed out since 
Mg(OH)2•2MgCO3•MgCl2•6H2O had smaller solubility than hydration product of magnesium oxychloride, so 
that hydration product of magnesium oxychloride was easy to be carbonized in the air, to finally produce the 
stable carbon-magnesium chlorate compound Mg(OH)2•2MgCO3•MgCl2•6H2O. 
Matkovic also studied stability of hydration products of magnesium oxychloride cement in the air and draw 
similar conclusions as Cole. When MgO/MgCl2 was less than 4, however, the five-phase or triphase was 
carbonized into Mg(OH)2•2MgCO3•MgCl2•6H2O slowly, with only carbonized surface and basically unaffected 
inside, so little change happened to strength of the test block. When the test samples were placed in the 
natural environment for a long term, especially affected by rain, the surface of the original test block would be 
carbonized into Mg(OH)2•2MgCO3•MgCl2•6H2O, which would resolve to 4MgCO3•Mg(OH)2•4H2O. Hydration 
products inside the test block were mainly the five-phase and also included some magnesium hydroxide and 
carbon magnesium chlorate. 
Substantive research shows that in the magnesia, magnesium chloride and water systems, hydration products 
were influenced by many factors and were instable, making a distinctive feature of magnesium oxychloride 
cement. Yet above analysis concluded that when MgO/MgCl2 ranked 4-6, the five-phase of hydration products 
could exist stably. In other conditions, however, hydration products would have transformation or 
carbonization, to change the internal crystallization structure of the test block, thereby to reduce strength. 
Under room temperature 518 phase would change into Mg(OH)2 and 318 phase, and the latter would change 
into Mg(OH)2: 

5Mg(OH)2⋅MgCl2⋅8H2O(s)=3Mg(OH)2⋅MgCl2⋅8H2O(s)+2Mg(OH)2(s)                                                                 (7) 

5Mg(OH)2⋅MgCl2⋅8H2O(s)=5Mg(OH)2(s)+Mg2+(aq)+2Cl-(aq)+8H2O(l)                                                             (8) 

3Mg(OH)2⋅MgCl2⋅8H2O(s)=3Mg(OH)2(s)+Mg2+(aq)+2Cl-(aq)+8H2O(l)                                                             (9) 

MgO+H2O=Mg(OH)2                                                                                                                                         (10) 

The magnesium hydroxide produced would continue to react with reactive silica to produce M-S-H gel. 

4.3 Influence on strength from building plaster and NaCl 

The concentration of Ca2+ and SO4
2- in the building plaster affects the hydration degree of superfine slag 

powder. The SO4
2- could react with calcium aluminate hydrate to produce needle-rod-like crystal woodfordite. 

It is obvious that the concentration is positively correlated with the amount of SO4
2-, the production speed and 

strength of the product. Of course, there should not be an excessive amount of building plaster in the SBCCM. 
The reason is similar to that for the control of gypsum amount in cement. Too many building plasters may slow 
down the hydration speed and delay the coagulation. This is because the woodfordite included on the particle 
surface could prevent external moisture from entering the inside of the granule. 
The hydration reactions were complicated by superfine slag powder, lump lime and gypsum: 

CaO+H2O=Ca(OH)2                                                                                                                                         (11) 

xCa(OH)2+SiO2+mH2O=xCaO•SiO2•(m+x) H2O                                                                                              (12) 
(active SiO2)                      (C-S-H) 

yCa(OH)2+Al2O3+nH2O=yCaO•Al2O3•(y+n) H2O                                                                                             (13) 
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(active Al2O3)  

yCaO•Al2O3•(y+n) H2O+CaSO4+H2O→Ca6Al2(SO4)3(OH)12•26H2O                                                               (14) 

During the yCaO•Al2O3•(y+n) H2O reaction, a part of calcium aluminate hydrate reacted with gypsum to 
produce calcium sulfoaluminate hydrate (AFt), namely woodfordite. The other part of calcium aluminate 
hydrate reacted with sodium chloride to produce 3CaO•Al2O3•CaCl2•10H2O (Fridel salt): 

yCaO•Al2O3•nH2O+NaCl→3CaO•Al2O3•CaCl2•10H2O+NaOH                                                                        (15) 

After Fridel salt was produced, Fridel salt continued to react with gypsum under the growing concentration of 
SO4

2-, with SO4
2- replacing some part of Cl- to produce Kuzel salt: 

3CaO•Al2O3•CaCl2•10H2O+CaSO4•2H2O→3CaO•Al2O3•(0.5CaCl2•0.5CaSO4)•12H2O+CaCl2                      (16) 

By products (NaOH and CaCl2) from the foregoing reaction continued to work as stimulator of the superfine 
slag powder, which guaranteed the sustained growth of strength of the net paste test block. 

5. Conclusions 
Focusing on the key components of SBCCM, the LSMI feature selection reveals that the important features of 
SBCCM are magnesia, building plaster and sodium chloride. The three key components were used for 
prediction and achieved good predictive results, proving LSMI’s feature selection ability in regression 
problems. Based on the analytical results, the optimal mixture ratio of SBCCM was adjusted to magnesia: 
building plaster: sodium chloride: lump lime: superfine slag powder = 8:10:2:5:75. The net-paste test block 
produced at this mixture ratio had an increase in its strength. Therefore, it is concluded that the LSMI is an 
effective feature selection method, and it can greatly reduce the workload in the preparation of the SBCCM. 
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