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In this paper, a quantitative analysis model is established with the help of hyperspectral imaging technology 
and the least squares method to study the biomass content in straw. The results show that the optimal 
selection of spectral dimensional data can be achieved through a competitive adaptive weighted sampling 
algorithm. In the experiment, the correlation coefficient of nitrogen in the verification set is 0.923 and the 
correlation coefficient of oxygen in the verification set is 0.876. Given that the prediction results of these two 
elements are relatively good and thus can be applied in practice. The practicality of other elements is poor. 
However, in the quantitative analysis model, the prediction results of these five elements are not satisfactory 
and the practicality is poor. 

1. Introduction 

With the development of science and technology, the productivity in rural areas has been further improved and 
the number of straw crops in rural areas has also presented a growing trend. The rational use of biomass 
content in straw is not only beneficial to the secondary utilization of energy, but also can promote the 
sustainable development of rural agriculture. Based on this, this paper uses the hyperspectral imaging 
technology to analyze the biomass content in straw. 

2. State of the art 

Hyperspectral image technology is a detection technique widely used in non-destructive testing of agricultural 
products in recent years (Edelman et al., 2015). Compared with conventional machine vision and near-infrared 
spectroscopy, hyperspectral imagery can simultaneously obtain external image information such as seed 
shape and color, as well as spectral information reflecting the internal chemical composition of the seed, 
thereby realizing a multi-faceted and multi-angle analysis of the object to be measured. Hyperspectral is 
widely used in non-destructive testing of agricultural products due to its many advantages. However, there are 
many bands of hyperspectral data. When using full-band modeling analysis, it not only increases the storage 
space of data, but also increases the actual amount of calculations. The real-time performance of the test 
results is affected. In fact, there is a high degree of correlation and redundancy between adjacent bands of a 
hyperspectral image, so that not every band has the same value for image processing (ElMasry and 
Nakauchi, 2016). Through the band selection algorithm, the least and most representative band subsets are 
combined to form a new hyperspectral image space to approximately replace the original hyperspectral image 
space, thereby achieving the purpose of reducing the dimension of hyperspectral image data. At the same 
time, the impact on the overall recognition accuracy is also relatively small, which is the ultimate goal of the 
selection of hyperspectral image bands. Since the industrial revolution, the process of urbanization in many 
countries of the world has entered a stage of rapid development. The number of urban population is 
increasing and the scale of cities is expanding. This is not a subjective process, but a result of the 
development of productive forces, the progress of science and technology, and the optimization and 
upgrading of industrial structures. Urbanization makes social division clearer (Guo et al., 2017). Scale effect 
and agglomeration effect are given full play, and the huge energy of urbanization is released. Siciliano linked 
urbanization strategies to changes in land use and associated impacts on rural communities and agro-
ecosystems in a rural area of China, his study showed that urbanization strategies brought pressure on 
environment. Sargeson concluded that the urbanization leaded to violent land expropriation. Since the reform 
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and opening up, China's economic development has made great achievements, and people's living standards 
have also been improved. However, the economic and social development between urban and rural areas is 
not coordinated. The traditional urbanization is taking economic development as the main target, the 
industrialization as the main line, and the local government as the leading (Rahman et al., 2016). It belongs to 
the high cost of low-income urbanization. Traditional urbanization brought about a series of problems of 
structural imbalance, spatial imbalance, industrial structure imbalance and urban disease. New urbanization is 
not only the key to the realization of modernization, but also to achieve the potential of building a moderately 
prosperous society. Industry is a natural process from agriculture to industry, and there is a general law. 
However, under different systems, the different stages of industrialization have different development paths 
and patterns. With the improvement of the level of industrialization, urban land area has been expanding and 
the population has been increasing (Luciani et al., 2015). Accordingly, with the acceleration of the urbanization 
process, it brings a series of problems such as traffic congestion, environmental pollution and chaos. 
Chemical industry is an important part of industrial development, which plays an important role in the national 
economy. It is also the basic industry and pillar industry in many countries (Liu et al., 2014). The pace and 
scale of the development of the chemical industry have a direct impact on the various sectors of the society 
and economy. At the same time, the chemical industry is also a big polluter. In the processing, storage, use 
and waste disposal and other links, chemical products are likely to produce a large number of toxic 
substances and affect the ecological environment, thus endangering human health. The sustainable 
development of chemical industry is of great practical significance to human economic and social development 
(Ma et al., 2014). Urbanization and industrialization are two wheels of economic advance. If there is no 
industrialization, urbanization will lose the power of development. If there is no urbanization, industrialization 
will lose the support of development. New urbanization and new industrialization are put forward in the new 
situation. It is not only the socialist path with Chinese characteristics of promoting the building of a well-off 
society and realizing the dream of China, but also a comprehensive development strategy of promoting new 
industrialization and new urbanization. In particular, the current construction of new urbanization requires the 
coordinated development of the chemical industry with sustainable development (Naganathan et al., 2016). 
The sustainable development of chemical industry requires the development of green industry in chemical 
industry. First, we should adopt the principle of cleaner production, use the clean energy and raw materials, 
and apply the advanced technology and equipment to improve the comprehensive utilization of management 
and other measures to reduce pollution from the source to improve resource efficiency, in order to reduce or 
eliminate the hazards to human health and the environment. 

3. Research principles and methods 

A total of 188 straw samples were collected, of which 89 were rice; 39 were wheat; 21 were corn; and 39 were 
rape. The samples came from the producing areas in Central and Southwest China (Hubei, Hunan, Sichuan, 
Chongqing, Guizhou, and Yunnan Province) covering various factors such as region, variety, climate, and 
species. The collected straw samples were first spread in the open air to a dry state (moisture content was 
about 10%) and then the samples were crushed with a pulverizer and placed in an oven (45±5) °C for about 8 
hours. The moisture was controlled at 5.5% ± 1%. Then, a hammer cyclone mill was used to grind, passing 
through a 40-mesh screen. The ground samples were placed in a labeled ziplock bag and stored at room 
temperature (around 25°C) for the collection of hyperspectral images and the measurement of basic chemical 
elements (N, C, H, S, O). The hyperspectral imaging system was used in this experiment for the collection of 
sample images, as is shown in Figure 1. 

 

Figure 1: Reflectance hyperspectral imaging system 
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This system is mainly composed of hyperspectral imager (SPECIM, V10E, Finland), collection camera 
obscura, height-adjustable working stage, ventilation fan, high-precision electronic control mobile platform and 
specialized computer. In the reflectance hyperspectral imaging system, the ring illuminator is placed on the 
illuminator holder in the camera obscura, which can provide the light source of 400 to 2500 nm spectral band. 
In order to avoid the interference of external light sources and other noise, the entire operation is completed in 
a camera obscura. The exposure time of the camera will affect the sharpness of the image and the movement 
speed of the high-precision electronic control mobile platform will affect the shape of the captured image. To 
obtain clear and undistorted images, these parameters need to be set. Based on the principle that the image 
signal is lower than the saturation value, the camera exposure time is determined as 0.1 s and the image 
resolution ratio is 250 pixels x 250 pixels; the movement speed is determined by collecting the images of the 
standard black and white squared paper at different collection speed. The speed that satisfies the undistorted 
condition is 2 mm/s. After 30 minutes of preheating, the hyperspectral imager can start the collection of 
images. The grinded and preserved straw samples are placed in a specialized spectral collection sample pool 
for image collection. 
The N, C, H, S, O elements of the sample (mass fraction) are measured according to the standards of the 
American Society for Testing and Materials (ASTM) and the instrument used is an EA 3000 elemental 
analyzer (Euro Vector Company, Italy). Three parallels are made on each sample and the average value is 
taken as the content of the sample. 
The element quantitative analysis model is established using spectral dimension and image dimension data 
respectively. First, the average spectrum of the region of interest in the hyperspectral image of the straw 
sample is extracted as the modeling spectrum of the straw element analysis model and the pre-possessing of 
the original spectrum is conducted using the remove the trend of transformation (Detrend), first-order 
derivative process (FD), multiple scattering correction (MSC) and its combination processing. The quantitative 
analysis model of straw element content is established combined with partial least squares (PLS). 
On this basis, the competitive adaptive reweighted sampling (CARS) is used to select the characteristic 
spectrum with higher contribution rate and an optimized element analysis model based on spectral 
dimensional data is established. Spectral element-based data element analysis model is established. 
Secondly, the independent component analysis (ICA) is conducted on the images of straw hyperspectral 
samples to obtain a series of images containing from image information to noise. Through observation and 
analysis, relevant images containing element information are selected and the characteristic spectrum is 
obtained using weight coefficient method. Based on the sample IC image and the extracted characteristic 
spectral information, the straw element analysis model is established based on ICA-PLS. 
In order to evaluate the predictability and practicality of the quantitative analysis model, the following 
parameters are introduced: correlation coefficient of calibration set cross-validation and root mean square 
error; correlation coefficient in the verification set and root mean square error. Meanwhile, the validation set is 
used to conduct relative analysis on error RPD. RPD = SD / RMSEP. SD is the standard deviation of sample 
element content in the validation set and RMSEP is the root mean square error of the validation set, which are 
then used for further evaluation of the model. 

4. Research results and analysis 

Chapter 2 The Monte Carlo algorithm is used to remove abnormal samples. The number of samples 
eliminated of N, C, H, S, O elements is 10, 5, 13, 8 and 12 respectively; the sampling is conducted using 
concentration gradient method and principal component analysis. The statistical results of the elemental 
content of the sample set, calibration set and verification set after removing the abnormal sample are shown in 
Table 1. 

Table 1: Statistics of elemental analysis index and gross calorific value in straw 

 Correction set Validation set 
 n SD/% n Average/% SD/% 
N 120 0.63 58 1.22 0.61 
C 122 2.47 61 44.32 2.53 
H 116 0.70 59 6.24 0.68 
S 116 0.14 64 0.24 0.11 
O 117 2.23 59 38.50 2.35 
 
According to Table 1, the mass fraction of the C and O elements in the sample set is relatively high, ranging 
from 34.33% to 52.81% and 33.29% to 43.75% respectively; the average mass fraction of N, H and S 
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elements is 1.12%, 6.48% and 0.25% respectively, which are relatively low content. Due to the wide sources 
and varieties of samples, the variable coefficient of each element is relatively large. The variable coefficient of 
N, H and S elements is 52.29%, 10.72% and 49.30% respectively, which indicates that the dispersion degree 
of sample element content data is relatively higher and the source of samples is wide. Also, these samples are 
representative and this experiment has practical significance. 
 

 

Figure 2: Wavelength variation curve 

 

Figure 3: Variable selection results based on competitive adaptive reweighted sampling (CARS) 

The average spectrum of the region of interest in the hyperspectral image of the straw sample is extracted as 
the modeling spectrum of the straw element analysis model and the PLS is applied in the full spectrum range 
(380 to 1100 nm) and the quantitative analysis model of straw element content is established combined with 
the pre-processing algorithm of various spectrums. The modeling results are shown in Table 2. 

Table 2: Results of elemental analysis model based on full spectrum and partial least squares (PLS) 

 Calibration set Validation set 
 Rcv RMSECV/% Rp RMSEP/% RPD 
N 0.926 0.234 0.901 0.217 2.81 
C 0.673 1.891 0.666 1.384 1.83 
H 0.657 0.537 0.649 0.529 1.29 
S 0.717 0.092 0.688 0.063 1.74 
O 0.863 1.100 0.856 1.105 2.13 
 
It can be seen from Table 2 that the correlation coefficient (Rp) of N element of the testing model in the 
verification set is 0.901; the root mean square error (RMSEP) is 0.217%; the relative analysis error (RPD) is 
2.81, showing good prediction ability. The correlation coefficient (Rp) of O element of the testing model in the 
verification set is 0.856; the root mean square error (RMSEP) is 1.105%; the relative analysis error (RPD) is 
2.13, showing good prediction effect. The correlation coefficient of C, H and S in the verification set is less 
than 0.70, which indicates that the established model cannot achieve quantitative analysis.  
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The competitive adaptive weighted sampling algorithm (CARS) is used to select a certain number of variables 
from the full-band variables to establish the model. The effect of the model is compared to eliminate the 
variable with low contribution and finally the optimal spectral variable is selected to build the model. The 
distribution of the variables selected by each element of the CARS algorithm is shown in Figures 2 and 3. 
It can be seen from the analysis of Figures 2 and 3 that the CARS variable optimization algorithm is used to 
select the sensitive variables of different elements of the straw. Although the variables are distributed over the 
entire spectrum, they are mainly concentrated in the near-infrared spectral region. The variables in the optical 
band range are relatively less, so the near-infrared band is very suitable for the quantitative analysis of straw 
elements. 
Based on the spectral variables selected by CARS, the PLS is used to establish the analysis model of various 
elements of the straw. The modeling results are shown in Table 3. 

Table 3: The modeling results 

 Calibration set Validation set 
 Rcv RMSECV/% Rp RMSEP/% RPD 
N 0.954 0.185 0.923 0.196 3.11 
C 0.716 1.725 0.721 1.364 1.85 
H 0.859 0.511 0.792 0.596 1.14 
S 0.764 0.083 0.669 0.062 1.77 
O 0.871 1.060 0.876 1.015 2.32 
 
It can be seen from the comparison of Table 2 and Table 3 that the number of variables participating in the 
modeling decreases significantly and the stability and prediction performance of the model both improve when 
CARS algorithm is used to optimize the quantitative analysis model of straw elements. The models of N and O 
elements are the optimal and 24 variables are selected to establish the model for N element. The correlation 
coefficient of the validation set (Rp) is 0.923; the root mean square error (RMSEP) is 0.196%; and the relative 
analysis error (RPD) is 3.11. Only 10 variables are selected to establish the model for O element. The 
correlation coefficient of the validation set (Rp) is 0.876; the root mean square error (RMSEP) is 1.105%; and 
the relative analysis error (RPD) is 2.32. It can be seen that the model predictive ability of N and O elements 
has been improved significantly and can be used in practical application. 
Comparing the model prediction results of the CARS-PLS for the C, H and S elements with the model 
prediction results established for the entire waveband, although the correlation coefficient (Rp) and relative 
analysis error (RPD) of the validation set have increased, the correlation coefficients (Rp) both are less than 
0.80, indicating poor prediction effect. From the above analysis of the sensitivity variables selected for the 
detection of each element, it is known that the near-infrared spectral region is more conducive to the 
quantitative analysis of straw elements. Therefore, the use of near-infrared hyperspectral imaging may 
improve the accuracy of the quantitative detection of C, H, and S elements.  
Based on the sample IC image and the extracted spectral information, quantitative analysis model of straw 
elements based on ICA-PLS is established combined with partial least squares (PLS) algorithm. The 
prediction effect of O element is the best, whose correlation coefficient (Rp) in the verification set is 0.808; root 
mean square error (RMSEP) is 0.932%; relative analysis error (RPD) is 2.04, indicating poor prediction effect. 
The model prediction effect of N, C, H, S and O in biomass straw based on ICA-PLS is worse than that of full 
spectrum-PLS and CARS-PLS. In addition, except O, the correlation coefficient (Rp) of the validation set of 
the remaining four elements is less than 0.80. The results show that the quantitative analysis model of straw 
element based on ICA-PLS algorithm cannot be used in practical application. 

5. Conclusion 

With the help of the hyperspectral system, this paper analyzes the biomass content in straw based on spectral 
dimension and least square method. It can be from the research results that the optimal selection of spectral 
dimension data can be achieved with the help of competitive adaptive weight sampling algorithm. In this 
experiment, the correlation coefficient of nitrogen in the verification set is 0.923 and the correlation coefficient 
of oxygen in the verification set is 0.876. Given that the prediction results of these two elements are relatively 
good and thus can be applied in practice. The practicality of other elements is poor. However, in the 
quantitative analysis model, the prediction results of these five elements are not satisfactory and the 
practicality is poor. 
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