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In order to improve the estimation accuracy of the state of charge (SOC) of electric vehicle, a second-order 
RC equivalent circuit model considering the battery capacity time-variation is proposed. Combining the 
nonlinear characteristics of lithium iron phosphate battery and the second- order RC equivalent circuit model, 
the state space equation of lithium iron phosphate battery is established. Based on the limited estimation 
accuracy of the extended Kalman filtering algorithm for nonlinear state equations, a central difference Kalman 
filtering algorithm is proposed. The simulation results show that the central difference Kalman filtering 
algorithm is better than the extended Kalman filter algorithm in the same condition for the estimation accuracy 
of SOC. 

1. Introduction 
After entering twentieth century, the problems of energy crisis and environmental pollution are becoming more 
and more prominent all over the world. In this situation, new energy vehicles, especially electric vehicles, have 
attracted the attention of major automobile manufacturers all over the world. Battery management system 
(BMS), as an important part of electric vehicles, can effectively manage and control the power battery, and 
ensure the efficient use of batteries and driving safety (Xiong, 2014). Battery management technology is still in 
the development stage, and many technologies are not mature. The focus and difficulty of the research is how 
to improve the estimation accuracy of battery SOC (Yinjiao et al., 2014). In this paper, the lithium iron 
phosphate battery (Saeed et al., 2014) is selected as research object, while the two aspects of battery model 
and model-based SOC estimation method are deeply studied. 

2. Establishment of lithium iron phosphate battery model 
BMS system of electric vehicle has no high-performance processor. But in the face of complex traffic 
conditions, complex computing will make higher demands on processors (He et al., 2014). From the point of 
view of economic applicability, it makes higher requirements on the modeling of the battery. 
First of all, the battery model can accurately reflect the dynamic and static characteristics of the battery, so the 
appropriate order is needed. Secondly, in order to adapt to the processor performance of BMS system, its 
order cannot be too high (Wladislaw et al., 2014). Therefore, the traditional equivalent circuit model is 
compared and the advantages and disadvantages of each other are considered. Combined with the basic 
characteristics of battery research and analysis, a nonlinear second-order RC equivalent circuit model 
considering the nonlinear change of capacity is proposed (Mohamed et al., 2013). 
As shown in Figure 1, the SOC estimation module is added to the left of the graph. The open circuit voltage 
and ampere hour method are combined to estimate the nonlinear change of battery capacity. Among them, 
0SOC is the initial value of SOC, and I is the load current. The calculation formula of the battery SOC is as 
follows (Claude et al., 2017): 
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In the formula, QN is the rated capacity of battery, and ηis the charge discharge efficiency. In lithium ion 
batteries, η≈1 is considered. I is the circuital current and it is symbolic (Charge I<0, discharge I>0).  

 

Figure 1: The second order RC circuit model that considering the capacity becomes 

The right side of the graph is a common second-order RC equivalent circuit. The voltage source Uoc is the 
open circuit voltage of the second-order circuit, and presents a functional relationship with the SOC value 
estimated on the left side. R0 is the ohmic resistance of the second-order circuit. ReCe is the fast response 
process of voltage after the sudden change for loop current. The RdCd loop is used to describe the slow 
response of the voltage after the sudden change of the current, and the Ubat is the load voltage. 

3. SOC estimation based on central difference Kalman filtering algorithm 
Considering the complex operating conditions and nonlinear characteristics of the battery, two nonlinear 
Kalman filtering algorithms, EKF algorithm and CDKF algorithm, are emphatically discussed (Dong et al., 
2017). Two algorithms are used to estimate the SOC of the battery, and the estimation results are analyzed 
and compared. 

3.1 EKF algorithm 

The standard Kalman filtering algorithm is suitable for linear dynamic systems, and the unbiased and optimal 
estimation of the state variables can be obtained. The standard Kalman filtering algorithm is suitable for linear 
dynamic systems, and the unbiased and optimal estimation of the state variables can be obtained (Li et al., 
2017). In order to simplify the calculation process, the standard Kalman filtering algorithm with discrete form is 
usually adopted, and corresponding is the state space equation of linear discrete systems (Pan et al., 2017). 
The KF algorithm can well solve the estimation of state variables in linear dynamic systems. But for nonlinear 
systems, we need to extend the use of Kalman filtering by linearizing processes (Ramadan et al., 2017). 
Setting the state variable xk=[xk

(1),xk
(2),xk

(3)]=[SOC(k), Ue(k), Ud(k)]T, the system input current is set to Uk=I(k) 
(Syam and Bharath, 2017). Then the state formula (2) and the output observation formula (3) are obtained: 
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The approximation of EKF to the posterior distribution of nonlinear states can only reach the first-order 
accuracy of Taylor series. When the system has strong nonlinearity, ignoring the higher order of second-order 
or more will introduce larger approximation errors in the calculation of the posterior mean and covariance, and 
these errors are cumulative. Finally, the accuracy of EKF filtering decreases and even diverges (Wei et al., 
2017). Although EKF has been successfully applied to various fields of probabilistic reasoning in the past 20 
years, it still has obvious disadvantages: (1) The complexity of Jacobian matrix derivation strengths the 
difficulty of many applications. (2) When the time step is not small enough and the local linear hypothesis is 
not established, the linearization will cause the filter instability (Mastali et al., 2013). 
As mentioned earlier, EKF has two shortcomings: (1) Its linear approximation accuracy is low; (2) It need to 
calculate the Jacobian matrix of nonlinear function. In order to overcome the shortcomings of EKF, the central 
difference method is used to improve the EKF, and the differential filtering theory is proposed (Karsten et al., 
2016). It uses the Sigma point transformation method to well approximate the mean and covariance, and 
obtains the performance similar to KF for linear systems. At the same time, it can be well applied to nonlinear 
systems, avoiding the linearization process required by EKF. 

3.2 CDKF algorithm 

The starting point of CDKF algorithm is to use Sterling interpolation formula to approximate the derivative of 
nonlinear equation by polynomial, so as to avoid derivative operation (Chen et al., 2016). The central 
difference is used to replace the first and second derivatives of the Taylor expansion around the X = Xഥ point. 
The CDKF algorithm can be represented as a form of symmetric sampling Sigma point. The weight 
corresponding to xi, i=0, 1, …, 2n is shown in formula (4): 
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3.3 Matlab simulation and result analysis 

Based on the previous analysis of the algorithm, it shows that the initial noise covariance Q and R of the 
system state vector need to be given in the initial estimation. In this model, the state variables include the 
polarization voltage Ue and Ud of the battery SOC and the two RC parallel networks. The initial SOC of the 
battery can measure the open circuit voltage, which is obtained by the relation of OCV-SOC without knowing 
the initial state value. When the initial error Pk is large, the Kalman gain matrix Gk is also larger. At this point, 
"new information" updates the system considerably, that is, it has a greater correction effect on the prediction 
value, making the prediction closer to the truth value (Swarup et al., 2016). After many predictions and 
modifications, the Kalman filtering algorithm converges to the truth value. At the beginning of the battery 
operation, the polarization voltage on the RC link can be considered as zero because the current has not been 
connected in parallel with the RC (Lin et al., 2017). 
Based on the equivalent circuit model, the EKF algorithm and CDKF algorithm are used to predict the battery 
SOC in real time. In order to verify the effect of the two algorithms in practical application, the actual working 
condition of the simulated battery is designed. The specific algorithm is implemented by Matlab program. The 
error covariance Qk of the process noise is set to 10-4, and the error covariance Rk of the measurement noise 
is set to 10-5. The starting point of the model SOC value is generally chosen as 100% (Liu et al., 2016). 

3.4 SOC estimation of cycle charge- discharge  

As shown in Figure 2, the periodic charge discharge experiment of lithium iron phosphate battery is carried out. 
The contrast diagram between the measured voltage and the actual measured voltage in the state equation is 
shown in Figure 3. 
According to the relation of OCV-SOC obtained previously, the CDKF algorithm is used to obtain the optimal 
estimation value of SOC. At the same time, compared with the EKF algorithm, the estimation results are 
shown in Figure 4. 
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Figure 2: current curve in the case of periodic 
charge/discharge 

Figure 3: The output voltage comparison chart in the 
case of periodic charge/discharge 

 

Figure 4: SOC estimation algorithm contrast curve in the case of periodic charge / discharge 

The estimated reference value of SOC in Figure 4 is the true value of the model, and it has some error with 
the actual SOC of the battery. But this calculation formula of SO combines the open circuit voltage method 
with ampere hour method, while this method can avoid the initial error caused by improper selection of 
ampere hour accumulation. At the same time, the variation of SOC can be accurately calculated at a certain 
sampling time. Therefore, this value has a certain precision and can be used as the true value predicted by 
EKF algorithm and CDKF algorithm (Hamza et al., 2016). 
From Figure 3, we can see that in the beginning of 1000s, the output voltage of the measurement equation is 
in error with the actual measured voltage of the battery. Moreover, when the initial error covariance 0P is small, 
the Kalman gain kG of EKF algorithm is smaller. Therefore, the correction range for the predicted value is not 
large. As shown in Figure 2, the error of EKF algorithm increases in the previous 1000s, and the CDKF 
algorithm has a short period of shock within 1000s, while the error decreases rapidly within about 500s. After 
1000s, the Pk- tends to be stable, and the correction range for the state matrix is smaller. The reliability of the 
predicted value is high, so the algorithm is stationary. At the same time, the truncation error of the EKF 
algorithm makes the estimation error, and the maximum absolute error is about 1.8%. The CDKF algorithm 
converges to the true value of the model after 1000s, and the error is obviously reduced. 

3.5 SOC estimation of battery of fast changing charge-discharge 

In order to verify the accuracy of the algorithm in the case of frequent changes of the battery power, the 
current of the battery is shown in Figure 5. The curves of the output voltage of the battery and the output 
voltage of the measurement equation are obtained, as shown in Figure 6. 
As shown in Figure 6, the output voltage of the measured equation has a very high fitting degree with the 
actual measured terminal voltage. Therefore, it shows that the truncation error of EKF algorithm has an 
influence on the estimation accuracy. 
As shown in Figure 7, the CDKF algorithm decreases rapidly after 200s after a short period of shock, and is 
not affected by the frequent fluctuation of current. However, due to the accumulated truncation error, the 
accuracy error of EKF algorithm increases after 400s and tends to be stable. 
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Figure 5: Input current under fast changing 
conditions 

Figure 6: Output voltage under fast changing 
conditions 

 

Figure 7: SOC estimation algorithm contrast curve under fast changing conditions 

4. Conclusion 
A lithium iron phosphate battery model is established in this paper. Two kinds of Kalman filter derivative 
algorithms, namely extended Kalman filter algorithm and central difference Kalman filter algorithm, are studied 
in this paper. The design flow of the two algorithms is introduced in detail. In this paper, the accuracy of the 
SOC estimation algorithm is studied by the charge-discharge current and the fast-changing current. Simulation 
results show that the accuracy of CDKF is significantly better than EKF algorithm. The precision errors can be 
analyzed from two aspects: First, the Jacobian matrix is obtained by the first-order Taylor expansion algorithm, 
while the truncation error is introduced due to the neglect of the higher order. Second, the error of the terminal 
voltage and the actual terminal voltage calculated by the measured equation leads to the fact that the EKF 
algorithm cannot track the true value accurately. 

Reference 

Chen X.Y., Xu Y., Li Q., Tang J., Shen C., 2016, Improving ultrasonic-based seamless navigation for indoor 
mobile robots utilizing EKF and LS-SVM, Measurement, 92, 243-251, DOI: 
10.1016/j.measurement.2016.06.025 

Claude F., Becherif M., Ramadan H.S., 2017, Experimental validation for Li-ion battery modeling using 
Extended Kalman Filters, International Journal of Hydrogen Energy, 42(40), 25509-25517, DOI: 
10.1016/j.ijhydene.2017.01.123 

Dong G., Wei J., Chen Z., Sun H., Yu X., 2017, Remaining dischargeable time prediction for lithium-ion 
batteries using unscented Kalman filter, 364, 316-327, DOI: 10.1016/j.jpowsour.2017.08.040 

Hamza B., Alexander N., Hassen S., 2016, Quadrotor UAV state estimation based on High-Degree Cubature 
Kalman filter, IFAC-PapersOnLine, 49(17), 349-354, DOI: 10.1016/j.ifacol.2016.09.060 

149



He W., Williard N., Chen C.., Pecht M., 2014, State of charge estimation for Li-ion batteries using neural 
network modeling and unscented Kalman filter-based error cancellation, International Journal of Electrical 
Power & Energy Systems, 62, 783-791, DOI: 10.1016/j.ijepes.2014.04.059 

Karsten P., Daniel J.A., Abbas F., Stefano L., Vaclav K., 2016, Kalman-variant estimators for state of charge 
in lithium-sulfur batteries, Journal of Power Sources, 343, 254-267, DOI: 10.1016/j.jpowsour.2016.12.087 

Li Z., Zhang P., Wang Z., Song Q., Rong Y., 2017, State of Charge Estimation for Li-ion Battery Based on 
Extended Kalman Filter, Energy Procedia, 105, 3515-3520, DOI: 10.1016/j.egypro.2017.03.806 

Lin C., Gong X., Xiong R., Cheng X., 2017, A novel H∞ and EKF joint estimation method for determining the 
center of gravity position of electric vehicles, Applied Energy, 194, 609-616, DOI: 
10.1016/j.apenergy.2016.05.040 

Liu L., Su Y., Zhu J., Lei Y., 2016, Data fusion based EKF-UI for real-time simultaneous identification of 
structural systems and unknown external inputs, Measurement, 88, 456-467, DOI: 
10.1016/j.measurement.2016.02.002 

Mastali M., Vazquez-Arenas J., Fraser R., Fowler M., Afshara S., 2013, Battery state of the charge estimation 
using Kalman filtering, Journal of Power Sources, 2013, 294-307, DOI: 10.1016/j.jpowsour.2013.03.131 

Mohamed M.R., Ahmad H., Abu M.N., Razali S., Najib M.S., 2013, Electrical circuit model of a vanadium 
redox flow battery using extended Kalman filter, Journal of Power Sources, 239, 284-293, DOI: 
10.1016/j.jpowsour.2013.03.127 

Pan H., Lu Z., Lin W., Li J., Chen L., 2017, State of charge estimation of lithium-ion batteries using a grey 
extended Kalman filter and a novel open-circuit voltage model, Energy, 138, 764-775, DOI: 
10.1016/j.energy.2017.07.099 

Ramadan H.S., Becherifa M., Claude F., 2017, Extended kalman filter for accurate state of charge estimation 
of lithium-based batteries: a comparative analysis, International Journal of Hydrogen Energy, DOI: 
10.1016/j.ijhydene.2017.07.219 

Saeed S., Reza G., Bor Y.L., 2014, A novel on-board state-of-charge estimation method for aged Li-ion 
batteries based on model adaptive extended Kalman filter, Journal of Power Sources, 245, 337-344, DOI: 
10.1016/j.jpowsour.2013.06.108 

Swarup M., Arunasis C., 2016, EKF Based Parameter Identification of LTI System from Seismic Response 
Measurements, Procedia Engineering, 144, 360-365, DOI: 10.1016/j.proeng.2016.05.144 

Syam P., Bharath B., 2017, Identification of the non-linear dynamics and state of charge estimation of a 
LiFePO4 battery using constrained unscented Kalman filter, IFAC-PapersOnLine, 50(1), 1571-1576, DOI: 
10.1016/j.ifacol.2017.08.311 

Wei J.W., Dong G.Z., Chen Z., 2017, On-board adaptive model for state of charge estimation of lithium-ion 
batteries based on Kalman filter with proportional integral-based error adjustment, Journal of Power 
Sources, 365, 308-319, DOI: 10.1016/j.jpowsour.2017.08.101 

Wladislaw W., Christian F., Dirk U.S., 2014, Critical review of the methods for monitoring of lithium-ion 
batteries in electric and hybrid vehicles, Journal of Power Sources, 258, 321-339, DOI: 
10.1016/j.jpowsour.2014.02.064 

Xing Y., He W., Michael P., Kwok L.T., 2014, State of charge estimation of lithium-ion batteries using the 
open-circuit voltage at various ambient temperatures, Applied Energy, 113, 106-115, DOI: 
10.1016/j.apenergy.2013.07.008 

Xiong R., Sun F., Chen Z., He H., 2014, A data-driven multi-scale extended Kalman filtering based parameter 
and state estimation approach of lithium-ion olymer battery in electric vehicles, Applied Energy, 113, 463-
476, DOI: 10.1016/j.apenergy.2013.07.061 

150




