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Anaerobic digestion producing biogas is a complex process comprising of a population of anaerobic 

microorganisms at four key stages, hydrolysis, acidogenesis, acetogenesis and methanogenesis. Parameters 

such as selection of feedstocks, pH, temperature, dry matter content and others significantly influence the 

process. Anaerobic digestion represents the core of the biogas production process. It could be represented by 

a centre of the onion diagram – “reactor”. Anaerobic digestion directly influences the biogas production 

process (second layer of the onion), and further its supply network (third layer), the company (fourth layer) and 

finally material, energy and waste treatment system of the company (fifth layer). This contribution introduces a 

synthesis approach based on onion diagram applied to biogas production systems. Proposed approach 

consists of the following steps where the hierarchy/dependencies are considered between the onion layers: i) 

reaction layer using the models for anaerobic digestion, ii) process layer by optimising the biogas production 

process, iii) supply network layer by optimising the whole supply network of biogas production, iv) company 

layer by the synthesis of biogas production together with the surroundings (farm, food-processing industry, 

etc.), and v) integrated company layer which includes improved energy and mass integration and treatment of 

water, waste and emissions. A similar approach could also be applied in other fields, such as in wastewater 

treatment processes. 

1. Introduction 

In recent decades, there has been a progressively greater awareness on preserving the environment and on 

social sustainability. Focus has been put on renewable energy, resource efficiency, waste management, 

circular economy and some other issues. In many countries taxes on harmful waste and emissions have been 

adopted and also financial incentives in the form of subsidies or credits could be obtained for more 

environmentally friendly solutions. However, several authors considered them as imperfect, inadequate, 

discriminatory (He et al., 2016) and incoherent (Huttunen et al., 2014).  

The subsidies to the biogas industry became the ongoing issue due to several externalities, such as odour, 

high cost, nitrogen footprint (Čuček, 2012), low efficiency and use of food crops and non-waste feedstocks in 

many cases (Lajdova et al., 2016). In several countries, many of the biogas plants would not be built without 

the financial subsidies. It is important that biogas plants are designed with the lowest externalities and possibly 

in a way that they do not require subsidies. There is also a need for research in reactors, processes, supply 

networks and integrated designs to be able to efficiently process unexploited waste resources (Bond and 

Templeton, 2011). Many possible designs exist which depend on the selection and ratios of feedstocks, 

process parameters and operating conditions which significantly affect the biogas process. It is important to 

optimise the biogas supply network design especially due to high transportation cost (Egieya et al., 2017). 

There are several types of biogas plants, such as landfill gas recovery plants, agricultural biogas plants, 

industrial biogas plants and biogas plants utilising municipal solid waste and sewage sludge as feedstocks (Al 

Seadi et al, 2008). All of them significantly affect the company performance. Finally, significant cost and 

improved environmental impact and social sustainability could be obtained by the process integration (Klemeš, 

2013), and by the treatment of emissions, waste, polluted waters and aqueous effluents. As the process is 

                               
 
 

 

 
   

                                                  
DOI: 10.3303/CET1761279

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Čuček L., Hjaila K., Klemeš J.J., Kravanja Z., 2017, Onion diagram implementation to the synthesis of a biogas 
production network, Chemical Engineering Transactions, 61, 1687-1692  DOI:10.3303/CET1761279  

1687



highly complex, the sequential approach considering the hierarchy might be applied to cover sufficient level of 

details. The hierarchy could be represented by the onion diagram which shows dependencies between the 

layers (Linnhoff et al., 1982). In the case of using the simultaneous approach where the hierarchy is not 

considered, “only” integrated sustainable company might be optimised.          

2. Onion Diagram of a Biogas Production Network 

The sequential design and optimisation of integrated biogas production network are suggested to follow the 

onion diagram, starting from the inner reaction layer and moving towards the outer layers where the solutions 

from inner layer are used as an input to the outer layers. Onion diagram, shown in Figure 1, consists of five 

layers, which are explained and schematically represented in the following.  

 

Figure 1: Onion diagram of a biogas production network (amended from Linnhoff et al., 1982) 

2.1 Reaction layer 
Anaerobic digestion production is a highly complex process. Due to the complexity of the process, a variety of 

experimental studies have been performed and models have been developed, from simple calculators to 

scientific models (Kythreotou et al., 2014), at the reaction layer to understand and optimise the process. Used 

feedstocks, their ratios and process parameters significantly affect biogas yield. Among the most important 

process parameters are temperature, organic loading rate, pH, mixing, retention time and the presence of 

inhibitors (Groce et al., 2016). As there is a variety of possibilities for optimisation, the models for anaerobic 

digestion might help to understand and optimise the process. The models typically take into account the 

kinetics of bacterial growth, substrate degradation and product formation. The most comprehensive and widely 

applied scientific model is IWA Anaerobic Digestion Model No 1 (ADM1) which includes biochemical and 

physico-chemical processes (Batstone et al., 2002). Biochemical processes describe disintegration and 

hydrolysis, acidogenesis, acetogenesis and methanogenesis steps, see also Figure 2.      
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Figure 2: Schematic representation of anaerobic digestion model (modified from Batstone et al., 2002) 
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Physico-chemical processes describe relations of pH, gas concentrations, free acids and bases, and other. 

ADM1 became the norm for the modelling of anaerobic digestion (Xie et al., 2016). However, the proof of the 

results from ADM1 model might be difficult due to many parameters which should be obtained from the 

measurements. On the other hand, several studies are available that show the good prediction of ADM1 

model compared with the experimental results (Chen et al., 2016). 

2.2 Process layer 
Several millions of biogas plants exist, and most of them are located in China and India (Bond and Templeton, 

2011). They have been a number of biogas plants in Europe (11,670 in 2014), many of them located in 

Germany and Italy (Cavinato et al., 2017). Many different designs of biogas plants have been available world-

wide (Gautam et al., 2009). The use of the feedstocks and their composition, water supply and handling, 

loading rate, temperature range (Drobež et al., 2011), retention time, reactor configuration, plant scale, 

treatment and use of biogas/biomethane and digestate, utilisation of heat, geographical location, infrastructure 

(Hijazi et al., 2016) and other significantly affect the biogas production design. Different types of biogas plants 

are having different sizes, designs and technologies (Al Seadi et al., 2008). Figure 3 shows an example of a 

simplified flow diagram of agricultural biogas plants, which typically use manure and energy crops, such as 

silage as co-substrates (Cavinato et al., 2017).  
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Figure 3: Simplified flow diagram of biogas production  

Biogas plants typically use mesophilic range (Hijazi et al., 2016) and operate under wet conditions in a 

continuous process (Weiland, 2010). Anaerobic digestion takes place in one or two-stage digesters. The two-

stage ones are preferred for digestion of energy crops (Weiland, 2010). Most common configuration is vertical 

continuously (mechanically) stirred tank fermenter, covered with a gas tight membrane roof (“biogas holder”) 

to store gas before utilisation (Weiland, 2010). Produced biogas primarily consists of methane and CO2, but 

also of smaller amounts of H2S, ammonia and water vapour. H2S and water vapour should be removed from 

biogas (typically by biological desulfurization and drying) to prevent damage on the gas utilisation units (gas 

engine based combined heat and power is mainly used) (Weiland, 2010). Digestate could be dewatered to 

reduce the transportation cost and recycle the process water. Produced biogas could be used for cooking, 

generating heat and electricity or could be upgraded to biomethane for use as a transportation fuel or as a 

replacement for natural gas. In developing countries biogas is typically used for cooking and lighting, and in 

developed ones for cogeneration producing heat and electricity (Surendra et al., 2014). Digestate could be 

used as a soil conditioner and/or organic fertiliser, however due to the possible presence of pathogens its 

proper treatment might be required (Surendra et al., 2014).  

2.3 Supply network layer 
Biomass feedstocks have several peculiarities, such as variable harvesting periods, low energy density, high 

storage requirements, deterioration during storage, extensive transportation and other (Egieya et al., 2017). 

On the other hand, waste (manure, agricultural waste, organic waste, sewage sludge) represent the 

environmental risk, and in some cases significant management issues and the threat to human health 

(Surendra et al., 2014). Substrates (biomass and waste) also vary based on their dry matter content, biogas 

yield per fresh matter and methane content of produced biogas. Additionally, local shortages of cheap 

feedstocks might limit biogas productivity and significantly affects the economics (Budzianowski, 2016), 

besides the high transportation cost which might represent the highest share of cost (Egieya et al., 2017). It is 

important to design a biogas plant by considering its supply network. A supply network is a set of facilities 

connected with distribution links to produce, store and distribute products to customers. Optimising the biogas 

production through supply network optimisation might help in decision-making process to identify resource 

efficiency improvements and economic and environmental opportunities. Figure 4 illustrates the biogas supply 
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network which consists of biomass collection, waste acquisition and preparation, anaerobic digestion, 

treatment of the obtained biogas and digestate, and the transportation and distribution steps. Supply network 

takes into account storage of biomass, waste, intermediate and final products (except products which cannot 

be stored), the possibility of selling biomass sources without transforming them to biogas and digestate, and 

selling untreated digestate. A supply network model helps to identify the potential locations and capacities of 

the digestion plants, storage facilities, treatment technologies, and all the material and energy flows. Different 

objectives might be preferred, such as maximal economic profit, overall sustainability profit (Zore et al., 2017) 

and other. Uncertainties which may result mainly from supply fluctuations and prices present important 

challenges relating to biogas supply networks. Prices of products and substrates have been identified as 

critical issues (Egieya et al., 2017).  

 

Figure 4: Scheme of a biogas supply network formulation (modified from Egieya et al., 2017)  

2.4 Company layer 
Based on the relative size, purpose and location biogas plants could be classified as family-scale (cooking, 

lighting), farm-scale (business opportunities), centralised/joint co-digestion plants (energy production, waste 

treatment and nutrient recycling), and industrial plants. Such industrial plants where biogas plants could be 

used for the treatment of industrial waste and waste waters are food processing industries (see Figure 5), 

beverage industries, industries producing paper and boards, starch and other (Al Seadi et al., 2008). 

 

Figure 5: Company supply network including biogas plants (modified from Kiraly et al., 2013)  
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Biogas plants could be organised in a decentralised or centralised way. Decentralised plants typically receive 

substrates from one household, farm or company. Centralised plants are typically organised as cooperative 

companies where different suppliers deliver substrates to the plants (Angelidaki and Ellegaard, 2003). The 

most important questions at the company layer are related to existence and availability of substrates and 

possibility to sell or use the products. As the biogas plants might significantly affect the company performance, 

optimisation of biogas production should be performed together with the other production activities of the 

company. 

2.5 Integrated sustainable company layer 
The increasing awareness towards the environment coupled with the environmental legislations and financial 

incentives push the stakeholders towards considering sustainability issues. This could be achieved through 

resource efficiency by process integration and by efficient treatment of emissions, waste, polluted waters and 

effluents (Figure 6). 
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Figure 6: Integrated company layer including Heat and Mass Integration and treatment of emissions, waste 

and polluted waters  

3. Conclusions  

In the longer-term sustainable solutions relating to energy requirements, resource use, efficiency, waste 

management and closing the cycles (“cradle-to-cradle” approach) are required. They have been several 

concerns related to overexploitation of resources, land and species and degradation of the environment. 

Several footprints are already in uncertain “region”, at high risk of crossing or have already crossed the 

planetary boundaries which might lead to non-linear environmental change (Steffen et al., 2015). Such most 

significant footprints are nitrogen, biodiversity, phosphorus, land and greenhouse gas footprints (Čuček et al., 

2015). Among the variety of possible solutions might be anaerobic digestion which offers inherent potential 

that is still underutilised. For anaerobic digestion many different waste substrates might be used, the process 

might operate at various scales and there are versatile possible uses of products. For better acceptance and 

lower cost, further improvements of the process are needed. Crucial issues requiring significant research 

activities are identified to be the following: i) optimisation of substrates use and their ratios together with 

influential process parameters, ii) improvements of the quality of digestate and/or product(s) containing 

nutrients in order to avoid the risk of biological hazards and contamination of with heavy metals, iii) 

optimisation of biogas supply network to reduce the overall cost, iv) optimisation in “real time” to be able to 

more appropriately respond to fluctuations in supplies and uncertainties and v) technical improvements (e.g. 

prevention of unpleasant odours when transporting waste materials, prevention of leakage) in order for 

technology to be more acceptable to people. Applying the onion structure for optimisation of biogas production 

can help to improve the sustainability of the process especially due to a complexity of each "layer".     
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