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Biodiesel has been recognised as one of the effective, green, renewable and sustainable fuels. It is derived from 

renewable living resources either animal fats or vegetable oils. Biodiesel production in the absence of catalyst 

using supercritical methanol has recently been receiving significant attention. Non-catalytic transesterification 

reaction eliminates the difficulties of catalyst preparation and separation processes. Although it has shown high 

conversion for the reactants with relatively short reaction time in comparison with the conventional catalytic 

transesterification processes, it has some disadvantages including higher reaction temperature and pressure, 

large excess of methanol to oil (M:O) molar ratio and higher energy consumption. In an attempt to mitigate these 

problems, an experimental study followed by process design/integration for biodiesel production from waste 

cooking oil (WCO) has been performed. A low-quality WCO collected from local restaurants has been selected 

as a feedstock for the reaction. The experimental phase of the transesterification reaction together with an 

optimisation procedure resulted in the optimised conditions of M:O molar ratio of 37:1, reaction temperature of 

253.5 oC, reaction pressure of 198.5 bar in 14.8 min. The maximum yield was 91%. In addition, kinetics of the 

reaction has been studied concluding an irreversible pseudo first order reaction with a reaction rate constant of 

0.0006 s-1. Moreover, thermodynamics of the reaction has been studied at a temperature range of 240 - 270 oC 

with resulting frequency factor and activation energy of 4.05 s-1 and 50.5 kJ/mol. A kinetic reactor has been 

simulated using the experimentally determined kinetic and thermodynamic data. The enthalpy content of the 

reactor product stream has been used to separate most of the unreacted methanol in an adiabatic flash drum. 

Finally, a scheme has been developed for an energy integrated process in order to maximise the heat recovery. 

Energy savings resulted from the developed heat exchanger network (HEN) have been concluded as 32.2 % 

and 23.8 % for both heating and cooling energies respectively, in comparison with an existing process energy 

requirements in the literature. The amount of heat exchanged for each unit has been determined in addition to 

composition, temperature and pressure of the streams. Vacuum distillation column has been designed to 

separate the unreacted triglycerides from biodiesel in order to fulfil the quality restrictions of the final biodiesel 

product. 

1. Introduction 

The incitements from the instability of petroleum prices, diminishing of petroleum reserves and environmental 

concerns about the emissions of petroleum based fuels have prompted the research on energy production from 

alternative renewable resources. Biodiesel has been recognised as one of the green, renewable and sustainable 

fuels. It is a clean fuel derived from either animal fats or vegetable oils. Biodiesel has the following advantages 

over diesel fuel: it produces less smoke, carbon monoxide, hydrocarbons and particulates, it is biodegradable 

and nontoxic, it provides better performance in engine lubricity. Moreover, biodiesel combustion exhaust is free 

of sulphur and aromatics. Transesterification reaction is the most commonly used technique for biodiesel 

production. This reaction includes acidic and basic catalysed processes for biodiesel production. Quality of the 
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feedstock is considered as the main factor affecting the selection of the production techniques. (Acedevo et al, 

2016). 

1.1 Catalysed production processes  
Homogenous basic catalytic process has been recognised as the most commonly used technique for biodiesel 

production. However, it requires high quality feedstock with low total acid number. High concentration of free 

fatty acids (FFA) in the feedstock is leading to saponification side reaction which leads to decrease the yield of 

the produced biodiesel. 

Heterogeneous basic catalyst has been proposed as a solution for total acid value restrictions for the feedstock. 

It also reduces the catalyst separation cost and it operates the reaction within similar conditions to the 

homogenous catalysed process with similar results. However, it requires very low water concentration of the 

feedstock due to its sensitivity. 

Acidic catalysed processes could be considered as an effective technique for low quality feedstock with high 

total acid value. However, their reaction is relatively slow compared to the base catalysed processes (Wen et 

al, 2009). 

1.2 Non-catalysed production process 
Supercritical fluid technology has significant influence in developing and upgrading several industrial processes. 

This contribution has illustrated new and advanced techniques for chemical and physical processes including 

the development of greener and sustainable processes (Wen et al, 2009). 

The non-catalytic production of biodiesel using supercritical methanol has been considered as an alternative 

process. This process tolerates transesterification of triglycerides in parallel with esterification of free fatty acids 

present in the feedstock. Saka and Kusdiana (2001) reported that biodiesel could be produced with 95 % yield 

within 2 min at 350 oC, 450 bar and 42:1 M:O molar ratio. 

In the present work, Response Surface Methodology (RSM) using Box-Bhneken Design (BBD) has been used 

to optimise the number of experiments, to analyse the effect of each reaction variable and to illustrate the effect 

of variables interaction on the reaction response. Analysis of variance (ANOVA) has been used to evaluate the 

significance of the predicted model and the reaction variables. Numerical optimisation has been used to optimise 

the reaction variables within specified targets. Kinetics of the overall reaction has been studied concluding 

kinetic and thermodynamic data of the reaction. Kinetic reactor representing the reaction has been simulated 

using the concluded kinetic data. A large-scale process for biodiesel production has been simulated by adding 

the kinetic reactor. Energy integration has been applied for the process for optimising the cooling and heating 

energies required for the process. 

2. Materials and methods 

2.1 Chemicals used 
WCO was supplied by Uptown Biodiesel Ltd., UK. Methanol 99 % was purchased from Fisher Scientific, UK. 

The standard methyl esters used for preparing calibration curves were purchased from Sigma-Aldrich, UK. 

Liquid CO2 cylinder (99.9%) equipped with a dip tube was purchased from BOC Ltd., UK. 

2.2 Experimental setup 
The experimental procedures were adopted as a modification of the experimental work which has been 

previously reported by Ghoreishi and Moein (2013). WCO was filtered in order to separate the remaining 

suspended solids from the cooking process. The supercritical methanol reaction was carried out in a 100-mL 

high pressure reactor made of stainless steel (model 9590, Parr Instrument Company, USA), which was fitted 

with a thermocouple (type J), heating mantle, controller (model 4848) and a mechanical stirrer. The WCO and 

MeOH with specific molar ratio were added to the reactor then heating the reactor with continuous stirring at 

300 rpm to the required temperature. A supercritical fluid pump (model SFT-10, Analytix Ltd., UK) was used to 

compress CO2 from the cylinder to the reactor with the specified pressure. The reaction time was started when 

the reactor reached the specified temperature and pressure. After reaction time, the reactor was quenched 

using an ice bath to stop the reaction. Then, the reactor was depressurised and the products were separated to 

biodiesel and glycerol using a centrifuge (1,500 rpm, 3 min per cycle). The separated biodiesel was heated to 

80 oC for 30 min to separate the unreacted MeOH using simple distillation. The biodiesel yield has been 

calculated using Eq(1). 

 

𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑌𝑖𝑒𝑙𝑑 =  
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑊𝐶𝑂 𝑢𝑠𝑒𝑑
∗ 100   (1) 

 

1646



2.3 Experimental design 
RSM has been developed to conclude the optimum conditions for biodiesel production by analysing the 

relationship between reaction response and reaction variables, Four independent variables have been identified 

including: M:O molar ratio, temperature, pressure and time, which have been labelled as A,B, C and D, 

respectively. Three levels have been coded by -1, 0 and 1 as shown in Table 1. Twenty-nine runs have been 

performed in a randomised way and for each run the response variable (biodiesel yield) has been calculated. 

The levels mentioned in Table 1 represent the range of the independent variables where the experiments have 

been performed within the specified range. Accordingly, any further conclusions for the effect of these 

independent variables would be valid only within the specified range. 

Table 1: Experimental design variables  

Variable   Code Levels  

   -1  0 1 

M:O (molar ratio) A 20 31 42 

Temperature (oC) B 240 260 280 

Pressure (bar) C 180 220 260 

Time (min) D 12 22 32 

 

2.4 Statistical analysis 
The generated model has been defined using the general quadratic equation. Investigation of the statistical 

significance of the model, reaction variables and the interactions between the variables has been analysed 

using ANOVA by calculating Fisher’s F-test at 95% confidence level. Numerical optimisation of the reaction 

variables has been targeted maximising the reaction response while minimising reaction temperature, pressure 

and time. Design of experiments, regression analysis and numerical optimisation has been performed using 

Design Expert 10 software (Stat-Ease Inc., Minneapolis, MN, USA). 

2.5 Reaction kinetics 
Kinetics of the overall transesterification reaction has been analysed based on specific reaction conditions. 

These conditions include irreversible reaction, constant MeOH concentration (presence of large excess of 

MeOH) and ignoring glycerol-methanol side reaction. 

2.6 Process Design 
Aspen HYSYS simulation programme version 8.8 has been used for simulating the biodiesel process (Aspen 

Technology Inc., USA). WCO used as a feed stock has been represented by triolien (C57H104O6) component 

from HYSYS component library as it is the main component of the feedstock. Accordingly, methyl oleate 

(C19H36O2) has been considered as the product of the reaction. According to the low total acid value of the 

feedstock, esterification reaction of the free fatty acids (FFA) has been ignored for reaction simplicity. 

Continuous stirred tank reactor (CSTR) has been chosen to represent the reactor. Conversion reactor used in 

most of the process deigns in the literature has been replaced by kinetic reactor. Kinetic and thermodynamic 

data required for the kinetic reactor i.e. activation energy (E) and Arrhenius constant (A), has been calculated 

from the experimental work of this study. 

Non-random two liquid (NRTL) thermodynamic model has been used as the fluid package for the process 

simulation since the reaction includes polar components i.e. methanol and glycerol. The missing binary 

interaction parameters in the simulator data bank have been estimated using UNIFAC vapour-liquid and liquid-

liquid equilibrium methods. Since NRTL activity model is not efficient for high pressure and temperature 

separation processes, Peng Robinson equation of state has been used for the product separation processes. 

The biodiesel plant capacity has been specified by 8,850 kg/h of WCO feed and 835 kg/h of fresh MeOH feed 

(Lee et al, 2011). 

3.  Results and discussion 

3.1 Statistical analysis 
After performing 29 runs generated by RSM and calculating the response variable for each run, Design Expert 

software generated a regression model representing an empirical relationship between reaction response and 

reaction variables. The polynomial model as shown in Eq(2) has been used for fitting the experimental results 

where Y represents the response variable (biodiesel yield); A, B, C and D represent the independent variables 

of M:O molar ratio, temperature, pressure and time. 
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ANOVA has been used to examine the adequacy of the RSM model using F-value and p-value tests which have 

been concluded to 65.4 and <0.0001. The ANOVA tests results have proven that the developed quadratic model 

is statistically significant with 95 % confidence level. 

 

Y = 94.2 + 4.08 A + 3.17 B+1.42 C + 0.50 D -0.25 AC - 0.50 AD - 0.50 BD- 3.77 A2 - 4.14 B2 -3.77 C2 - 3.14 D2 (2) 

 

3.2 Optimisation of reaction variables 
Numerical optimisation of the reaction has been carried out to conclude the optimum values for reaction 

variables for biodiesel production. Targets of the reaction variables have been set based on environmental and 

economic concerns. Temperature, pressure and time have been targeted to be minimised due to their huge 

consumption of energy. Reaction response has been targeted to be maximised. The numerical optimisation 

concluded that the maximum biodiesel yield that can be achieved at minimum reaction variables is 91 % at M:O 

molar ratio of 37:1 at 253.5 oC, 198.5 bar and 14.8 min. 

The predicted optimum conditions have been experimentally validated showing similar response of 91.5 % 

biodiesel yield. This result has validated the predicted model with 0.54% relative error from the experimental 

data. 

3.3 Reaction kinetics  
The validated quadratic model has been used for predicting the required experimental results for kinetic 

calculations. The required kinetic data have been studied between the temperature range 240 oC and 280 oC 

and reaction time from 12 to 20 min. The reaction has been considered to be pseudo first order reaction which 

has been proven experimentally when plotting the experimental results with the first order equation, it concluded 

straight line. From the determined graph, the reaction rate constant has been calculated to be 0.000,6 s-1. Using 

Arrhenius equation for thermodynamic calculations, activation energy and Arrhenius constants has been 

calculated to be 50.5 kJ/mol and 4.05 s-1. 

3.4 Reactor simulation 
HYSYS simulation programme has been used to simulate the biodiesel reactor at the concluded optimal 

conditions. Transesterification reaction of triolien has been introduced to the simulator using the balanced 

stoichiometric reaction coefficients. Reaction kinetic and thermodynamic data i.e. activation energy and 

Arrhenius constant, have been identified from the experimental results. The molar ratio of M:O has been 

considered by identifying the molar flow of triolien by 10 kmol/h, while methanol flow rate has been identified by 

370 kmol/h resulting in mixture stream of 380 kmol/h. Temperature and pressure have been identified based on 

the optimum concluded conditions as 253 oC and 199 bar.  

The kinetic reactor has simulated the reaction at the optimum conditions resulting in 91.7 % conversion of 

triolien. However, the experimental results at the optimum conditions show 91.5 % conversion of triolien. These 

results show that the relative error between the simulation and the experimental data is 0.2%. The kinetic reactor 

results proved the accuracy of the kinetic calculations and the adequacy of the predicted model. 

3.5 Process simulation  
Biodiesel production process with supercritical methanol consists of four main steps: pressurising and heating 

of reactants, transesterification reaction, unreacted methanol recovery and biodiesel purification. Lee et al. 

(2011) have simulated a process for biodiesel production from WCO using supercritical methanol. They have 

used plug flow reactor (PFR) to represent the reaction. In this study, similar process scheme has been 

developed with minor modification as shown in Figure 1. 

 

 
Figure 1: Process flow diagram (PFD) for biodiesel production 
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Table 2: Stream table for the designed process  

Name 101 102 104 106 107 109 112 113 114A 115A 

Temperature 
(oC) 

25 25 168 222.9 69.78 160.2 25 25 25 25 

Pressure [kPa] 100 100 19850 19840 100 100 100 100 101 101 
Molar Flow 
[kmol/h] 

27.54 10 380 380 78.15 39.75 9.586 30.16 27.25 2.914 

Mass Flow [kg/h] 882.4 8854 20710 20711 11038 9807 857.7 8950 7597 1352 
Liquid Volume 
Flow [m3/h] 

1.108 9.666 24.56 24.56 12.41 10.86 0.686 10.17 8.670 1.506 

Mole fractions                      

Triolien 0 1 0.026 0.002 0.010 0.020 
8 
 

0.027 0 0.951 

Methanol 1 0 0.973 0.901 0.520 0.056 0.043 0.06 0.066 0 

M-Oleate 0 0 0  0.072 0.352 0.692 0 0.912 0.933 0.048 

Glycerol 0 0 0 0.024 0.117 0.230 0.956 0 0 0 

 

3.6 Process Integration  
Energy consumption comparison between the developed process without any heat exchanger (original 

process), designed process based on literature as simulated by Lee et al, (2011) and the new energy integrated 

process has been developed showing the effect of integration in minimising the energy consumption. Using 

Aspen Energy Analyzer® V8.8 programme energy analysis using composite curve, as shown in Figure 2, has 

been applied for the literature based process showing the amount of energy that could be integrated either for 

cold or hot streams. 

 

 
Figure 2: Composite Curves for the biodiesel production process 

 

In the composite curves, the streams overlapping together show the quantity of energy that could be integrated 

through the process. (Farrag et al, 2016). It is clearly shown in Figure 2 that further integration would be achieved 

with total integrated energy of 6.75x106 kJ/g. The integrated energy targets for heating (Qh) and cooling (Qc) 

using external utilities have been found to be 1.408x107 kJ/h and 2.156x107 kJ/h, respectively. A minimum value 

of 10 oC has been selected for integration since this value has been commonly used in most of the chemical 

and petrochemical plants. The Pinch temperatures have been concluded to be 168 oC and 178 oC for both cold 

and hot streams. HEN has been designed in order to integrate the process based on Pinch analysis regulations. 

Figure 3 shows that two heat exchangers have been added above the Pinch and other two have been added 

below the Pinch Temperature. The unsatisfied streams after adding the possible heat exchangers have been 

supplied using external utilities. Utilities selection criteria have been applied for minimising the overall cost of 

the process. The HEN design has nearly achieved the targets of integration with 1.409 x107 kJ/hr and 2.158 

x107 kJ/hr for heating and cooling required energies, respectively. Table 3 shows the comparison between 
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original, literature and integrated processes energy required and the energy saving percentage between the 

literature and integrated processes. 

 
Figure 3: Heat exchanger network designed for the integrated process 

Table 3: Comparison between original, literature and integrated processes   

Process Type  Original  Literature  Integrated  % Saving 

Heating (kJ/h)*107 2.56 2.08 1.409 32.3 

Cooling (kJ/h)*107 3.31 2.83 2.158 23.8 

 

4. Conclusions 

Production of biodiesel from WCO has been studied using supercritical methanol. A quadratic polynomial model 

has been developed showing an empirical relationship between biodiesel yield and reaction variables. 

Numerical optimisation has been applied minimising temperature, pressure and time while targeting to maximise 

biodiesel yield. The optimum biodiesel yield has been found to be 91% at M:O molar ratio of 37:1, 253.5 oC, 

198.5 bar and 14.8 min. The predicted optimum conditions have been validated experimentally. Kinetic and 

thermodynamic data of the overall reaction have been studied. Simulation of a kinetic reactor based on the 

experimentally determined kinetic data has been achieved. Process design for biodiesel production has been 

simulated and compared with an existing process in the literature. HEN design has concluded energy savings 

of 32.3 % and 23.8 % for both heating and cooling required energy. 
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