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Coal gasification stripped gas liquor (CGSGL) wastewater contains large quantities of complex organic and 

inorganic pollutants which include phenols, ammonia, hydantoins, furans, indoles, pyridines, phthalates and 

other monocyclic and polycyclic nitrogen containing aromatics, oxygen- and sulphur containing heterocyclic 

compounds. Most conventional aerobic systems for coal gasification wastewater treatment are not sufficient in 

reducing pollutants such as chemical oxygen demand (COD), phenols and ammonia due to the presence of 

toxic and inhibitory organic compounds. The current paper reports on the degradation of aromatic compounds 

and the reduction of hard COD in CGSGL using a Moving-Bed Biofilm Reactor (MBBR) system. The inoculum 

contained a genetically enhanced mixed culture of Pseudomonas putida, Pseudomonas plecoglossicida, 

Rhodococcus erythropolis, Rhodococcus qingshengii, Enterobacter cloacae, Enterobacter asburiae strains of 

bacteria, seaweed and diatoma. Consistently high hard COD removal (>88 %) and degradation of targeted 

phenolic compounds (>93 %) was achieved in the reactor with no loss of biodiversity in the consortium culture. 

The performance of the reactor outside the observable range was projected using a Back-Propagation 

Artificial Neural Network (BP-ANN) developed in this study. 

1. Introduction 

South Africa has no known petroleum reserves, but it has large quantities of coal reserves projected to last 

another 200 years under the current use. Coal can be converted to liquid fuel through a gasification 

liquification process. Sasol uses the patented Sasol-Lurgi process to convert low ranking coal to carbon 

monoxide as the first step towards the creation of the liquid fuel (Ginster and Matjie, 2005). Unfortunately, the 

low ranking coal used in the Sasol-Lurgi process contains large amounts of compounds with polar and 

hydrophilic functional groups such as OH, COOH, O, NH2, and SH (Molva, 2004). A number of coal 

gasification plants in China also use lignite coals as a raw material to produce gas via the Lurgi process. Jin et 

al. (2013) reported the presence of phenols, cyanides, thiocyanates, polycyclic aromatic hydrocarbons 

(PAHs), nitrogen-, oxygen-, and sulphur-containing heterocyclic compounds in the coking wastewater. In other 

related studies, coal gasification wastewater was reported to contained significant amounts of hydrogen 

sulphide (H2S) (Gai et al., 2008), ammonia (NH3) and carboxylic acids (Liu et al., 2013), and long chain 

alkanes (Ji et al., 2015). 

Due to the mixed nature and complexity of the compounds in the coal gasification wastewater, treatment of 

this wastewater using physical chemical processes tends to be expensive and most of the time ineffective. 

Currently, the non-biodegradable component of coal gasification wastewater is mostly removed by solvent 

extraction and ammonia stripping. The latter process produces a secondary stream of highly toxic effluent 

(Yang et al., 2006).  

Microorganisms containing the monooxygenase and dehydrogenase enzymes such as Pseudomonas putida 

(Shen and Wang, 1995), Pseudomonas aerigunosa (Oboirien and Chirwa, 2007), and Alcaligenes eutropha 

(Ornston, 1966) are known to facilitate ring cleavage of aromatic compounds leading to degradation of a range 

of aromatic compounds. Selection and packaging of such compounds into optimised culture soups could 
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provide opportunities for treating highly toxic wastewater at a low cost. 

In this study, the removal of chemical oxygen demand (COD), phenols and ammonia-nitrogen in a hybrid 

fixed-film bioreactor (H-FFBR) inoculated with a mixed culture of bacteria containing aromatic compound 

organisms was investigated. To achieve the above objective, the compounds in the wastewater were 

characterised. Furthermore, the genetic makeup of organisms in the reactor was determined using PCR 

followed by genetic sequencing and 16S rRNA genotype fingerprinting. The performance data collected over a 

period of 6 months was used to calibrate a self-learning Back-Propagation Artificial Neural Network (BP-ANN) 

to be used for control purposes. The BP-ANN used in this study was originally adopted from Hajmeer and 

Basheer (2002). A version of the trainable neural network model was tested by Jacobs and Chirwa (2015) for 

the evaluation of parameters in a phenol-degrading/Cr(VI)-reducing culture. 

2. Materials and methods  

2.1 Moving-bed biofilm reactor setup 

The moved-bed hybrid fixed-film bioreactor (H-FFBR) consisted of 3 aeration compartments in series 

designated as Zone 1, Zone 2 and Zone 3 (Figure 1). The specific respective volumes for the Zones 1, 2 and 

3 were 250 L, 150 L and 600, respectively, resulting in a total bioreactor volume 1,000 L. The bioreactor was 

acclimatised to the feed over a period of time such that the reactor was subjected to at least three complete 

bacterial sludge ages.  

 

 

Figure 1: Configuration of the moving-bed, hybrid fixed-film bioreactor pilot plant (H-FFBR) used in the study 

2.2 Inoculum culture characterisation 
DNA primers 27F (5’-AGAGTTTGATCMTGGCTCAG-‘3) and 518R (5’-ATTACCGCGGCTGCTGG-‘3) were 

used in the amplification of the 16S rRNA gene using the Q5® Hot Start High-Fidelity 2X Master Mix (New 

England Biolabs, UK) PCR system following the manufacturer’s instructions. The amplicon libraries were 

purified using the Agencourt® Ampure® XP bead protocol (Beckman Coulter, USA). The library concentration 

was measured using the NEBNext® Library Quant assay kit for Illumina® (New England Biolabs, UK). The 

library pool was sequenced on a MiSeqTM (Illumina, USA) using the MiSeqTM Reagent kit v3, 600 cycles PE 

(Illumina, USA). The final pooled library was at 10 pM with 20 % PhiX as control. The DNA sequence for each 

pure colony was then uploaded to the Basic Local Alignment Search Tool (BLAST) of the National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov). A phylogenetic tree was constructed from the 

identified 16S rRNA sequences using the neighbor-joining method in the MEGA Version 6 software (Tamura 

et al., 2013). 

2.3 Analytical methods 

2.3.1 COD measurement 
Chemical oxygen demand (COD) was determined by oxidation of oxidizable COD using a sodium dichromate 

solution. Using readily oxizable substance, sodium dichromate is readily reduced to the trivalent (III) state 

while oxidising organic compounds (APHA, 2005). 

2.3.2 Measurement of metals 
Samples for soluble metal analyses (sodium, calcium, iron, silica, potassium, copper, zinc, lead, vanadium, 

manganese, chromium, cobalt, nickel, aluminium, molybdenum and magnesium) were preserved with 10 mL 
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concentrated nitric acid per litre sample and stored at 6±2 ºC. Samples were filtered through 0.45 µm 

membrane filters (Merck Millipore, South Africa) and analysed by inductively-coupled plasma-optical emission 

spectrometry (ICP-OES) (Agilent Technologies, USA) following the U.S. EPA Method 200.7 (1979) (U.S. EPA, 

1979). The ICP-OES was operated and controlled using the installed Agilent ICP Expert II software (Agilent 

Technologies, USA).  

2.3.3 Semi-volatile compounds 
Aromatic and semi-volatile compounds in water samples were characterised using the Perkin-Elmer Clarus 

500 GC-MS equipped with Clarus 600T equipped with headspace (Perkin Elmer, Connecticut, USA). 

Separation of compounds in the GC was performed in a Perkin–Elmer Elite—5MS capillary column (30 

m×0.25 mm ID ×0.5 µm fixed phase) with helium as a carrier gas with the GC operating in a split-less mode. 

The oven temperature was kept initially at 60 °C for 5 min, followed by an increase to 300 °C at a rate of 15 
oC/min. 

2.3.4 Polar aromatic compounds 
Hydrophilic aromatic compounds were measured using the Waters 2695 high performance liquid 

chromatograph (HPLC) (Waters Corporation, Massachusetts, USA) equipped with the Waters Photo Diode 

Array (PDA) detector operated at = 254 nm, and a Waters PAH C18 column (4.6 mm × 25 cm with 5 µm 

packing) operated at a column temperature of 25 oC. Extraction was done in a 1:1 ratio of sample and 

acetonitrile.  

3. Results and discussion 

3.1 Microbial culture composition 

The dominant kingdom classification for the biofilm was bacteria (99.8 %) with 0.2 % consisting of archaea, 

fungi and protozoa. The dominant phyla were Proteobacteria (75.0 %), Firmicutes (3.66 %), Bacteriodetes 

(5.16 %) and Actinobacteria (1.65 %). The dominant classes were Beta-proteobacteria (32.9 %), Alpha-

proteobacteria (34.8 %), Gamma-proteobacteria (13.6 %), Bacteriodetes (4.14 %) and Actinobacteria (1.65 

%). Uncultured bacteria comprised 14.53 % and 12.91 % of the uncultured phylum and class classifications 

respectively (Figure 2). The bacterial BLAST nucleotides were 99 % homologous to three strains of 

Pseudomonas putida, two strains of Enterobacter cloacae, one strain of Enterobacter asburiae and one strain 

of Rhodococcus erythropolis. These strains are tolerant and effective in high conductivity wastewaters and the 

hypothesis is that these strains will improve the biodegradation of petroleum hydrocarbons (oils and grease), 

alkanes and aromatic compounds typically found in CGSGL.The core genera and specific species in the 

actual bioengineered inoculum contained several Pseudomanads which are intended for the biodegradation of 

aromatic compounds. Several species from the Rhizobial sources were also identified (Table 1). 

 

 

Figure 2: Relative abundance of bacterial phyla in the H-FFBR (excluding unidentified phyla) 

3.2 Moving-bed bioreactor performance  

Phenol (C6H6O); isoquinolinones (C9H7N) and saturated carboxylic acids (C4H8O2; C6H12O2; C7H14O2; 

C8H15O2; C16H32O2) were detected in the effluent when phenol (C6H6O), isoquinolinones (C9H7N), substituted 

cyclopentanones (C6H6O), substituted benzoic acids (C8H8O2) and phenylbutenones (C10H10O) were detected 

in the feed. Thus, these compounds were degraded slower when phenylbutenones (substituted aromatic 

alkenone) were present in the feed. Hydantoins (C5H8N2O2; C6H10N2O2) were only detected in the effluent 
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when phenol (C6H6O), aniline (C6H5NH), substituted cyclopentanones (C6H6O), furans (C6H6O) and pyridines 

(C6H7N9) were detected in the feed. In this phase of the project, phenol was used as a surrogate for the 

majority of aromatic compounds confirmed to be present using GC-MS. The removal of total phenols ranged 

between 62 % and 93 % with an average of 78 %, thus 22 % of the total phenols were soluble, but non-

biodegradable (Figure 3). The removal of phenols was affected by factors such as substrate inhibition effect, 

pH, temperature, biomass concentration, microbial community and their metabolic potential, and nutrient 

concentration. Biodegradation was also affected by the positions of the methyl groups of methyl phenols. The 

p-substituted phenols were more readily biodegradable than the m- or the o-substituted phenols since they are 

weaker electron donors (Rava et al., 2015). 

Table 1: Core genera and species across the H-FFBR 

Feed (RAS) Biofilm Suspended biomass (SB) Effluent (CA) 

Pseudomonas  
aeruginosa 
(AF440523.1) 
(6-8 %) 

Thauera  
butanivorans 
(NR_040797.1) 
(5-10 %) 

Ochrobactrum  
anthropi 
(AB120120.1) 
(2-4 %) 

Rhodoplanes  
cryptolactis 
(AB087718.1) 
(1-8 %) 

Rhodoplanes  
cryptolactis 
(AB087718.11) 
(2-5 %) 

Pseudaminobacter 
salicyclatoxidans 
(NR_028710.1) 
(3-5 %) 

Thauera  
butanivorans 
(NR_040797.1) 
(1-4 %) 

Pseudomonas  
putida 
(AE015451.1) 
(0.3-5 %) 

Xanthobacter 
polyaromaticivorans 
(AB106864.1) 
(1-3 %) 

Pseudomonas  
aeruginosa 
(AF440523.1) 
(1-3 %) 

Pseudomonas  
aeruginosa 
(AF440523.1) 
(1-3 %) 

Pseudomonas  
aeruginosa 
(AF440523.1) 
(0-4 %) 

Diaphorobacter 
nitroreducens 
(AB076856.1) 
(0.6-2 %) 

Diaphorobacter 
nitroreducens 
(AB076856.1) 
(1-2 %) 

Ancylobacter 
polymorphus 
(NR_04279.1) 
(0.6-2 %) 

Diaphorobacter 
nitroreducens 
(AB076856.1) 
(0-3 %) 

(a)Pooled data from sample set 1 and sample set 2 

 

  

 
 

 

Figure 3: Figure showing removal rate of phenol across the H-FFBR system 

3.3 Calibration and Application of BP-ANN (TANN) 
The neural network was trained using a back-propagation algorithm (Figure 4) with the goal of achieving a 

minimum net error on the validation data set while preventing overtraining or memorisation (Sewsynker and 

Kana, 2016). The experimental data set were randomly divided into two sets (i) 75 % of the data were used for 

training and (ii) 25 % of the data were used for the validation and testing process. A net error value on the 

validation data set of 0.018 was achieved after 3700 training epochs. The accuracy of the developed model 
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was assessed on fourteen novel process conditions (validation data set). With this data set, the regression 

analyses on predicted and observed process outputs, and, the coefficients of determination (R2) were 

calculated for each model output. 

 

 

Figure 4: Back-propagation training algorithm used for the model ANN training, where MSE = mean square of 

differences and E = target minimum error between model data and measured values 

The validation was achieved by using the Artificial Neural Network (ANN) model to predict the process output 

values of Zone 1 Biofilm thickness, Zone 2 Biofilm thickness, Zone 3 Biofilm thickness, Zone 1 OUR, Zone 2 

OUR, Zone 3 OUR, Suspended Biomass (MLSS), COD removal (%) and Phenol removal (%) based on 

fourteen process conditions not previously exposed to the model (Figure 5). The output values gave varied 

coefficients of determination (R2) up to 0.96 (average 0.85, excluding outliers). High coefficient of 

determination (R2>0.7) suggests a higher reproducibility and accuracy in the model when subjected to the 

novel H-FFBR operational conditions. Thus, the higher predicted outputs (R2>0.7) accounted for more than 70 

% variation in the observed data. The only coefficients below 0.7 were for o-Phosphates removal (R2 = 0.06) 

and for phenol removal (R2 = 0.57 %). The removal of o-Phosphates was not considered significant enough to 

be estimated using the developed ANN model since R2 outliers have a negative effect on ANN based model 

development as was earlier observed by Rorke et al. (2017). 

 

 

Figure 5: Comparative regression (R2) values for each output using the Trained Artificial Neural Network 

(TANN). 

4. Conclusions 

Diluted CGSGL was successfully treated in a pilot H-FFBR reactor using a bioengineered inoculum of phenol 

degrading organisms. A diverse microbial community in the inoculum removed most of the hard COD 

including phenolic compounds. However, nitrogen compounds were resistant to degradation due to the 
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absence of autotrophic ammonia-oxidising bacteria in the inoculum. The microbial community diversities in the 

reactor were significantly dissimilar thus indicating that microbial communities were affected by the different 

growth environments in the H-FFBR. Part of the observed data was used to train a predictive Artificial Neural 

Network developed in this study which successfully predicted biofilm growth rate in phases not used during 

the training phase of the model. 
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