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In this work it is planned to apply the MPC approach for the optimization of energy consumption of electroerosion 

process for water purification. For this purpose is necessary to develop a mathematical model of the water 

purification process. Distribution of electrical discharges between the metal balls in contaminated water is one 

of the stages of electroerosion process for water purification. In this paper a mathematical model of the 

distribution of electrical discharges between the metal balls in the aqueous solution is presented. Method of 

probabilistic cellular automata was used to develop a mathematical model, since the distribution of electrical 

discharges is a stochastic character. The modeling results were compared with experimental data.  

1. Introduction 

Nowadays, the tasks of creation and upgrading of technologies and methods for the purification of air and water 

from pollution are of scientifically interest. CO2 emissions in the atmosphere are increasing due to the large use 

of natural gas and coal for the production of electric energy. Reducing CO2 content in the atmosphere is an 

actual problem. Azmi et al. (2016) proposed a combined process of adsorption and gas hydrate formation as 

an alternative approach for the separation of carbon dioxide (CO2) content from gas stream. The objective of 

this research was to study adsorption isotherms of the CO2 onto the synthesized calcium oxide (CaO) via a 

static volumetric method at 2 °C and at different amount of water ratio. Zarogiannis et al. (2016) studied a 

systematic approach for the preliminary screening of binary amine mixtures as CO2 capture candidates 

considering several important properties as selection criteria. A study of the population of any country with 

quality classification of drinking water and the treatments used for industrial wastewater is also an urgent task. 

Today a large number of water purification methods are used: reverse osmosis, reagent coagulation, aeration, 

sedimentation, distillation, etc. Each of the foregoing methods have different advantages and disadvantages. 

Lutchmiah et al. (2014) reviewed problems and prospects the use of reverse osmosis membranes for 

wastewater treatment. The main disadvantages dealing with these methods are: a large consumption of 

reagents, the need for periodic replacement of membranes, high costs of reagents and membranes, large areas 

needed for equipment installation and the ineffectiveness to clean water sources by toxic substances, like 

arsenic, and dissolved salts. In the scientific literature, several articles studied different optimization approaches 

and the development of automatic control systems. In the study of Manenti et al. (2015) an optimization work 

on the reverse osmosis module with recycle is developed using MPC approach. However, the proposed control 

and optimization system cannot eliminate the disadvantages inherent to these methods. Therefore, it is 

necessary to develop a new energy-saving and resource-efficient methods for water purification. 

One of these methods, based on the use of electric energy, is the water purification by electroerosion process 

(EDM process) of metal balls. The electroerosion process of metal workpieces has been known for more than 

70 years, but the use this method for water purification is a novelty. This new process of electroerosion for water 

purification has several advantages: it is based on cheap raw materials (metal balls) and characterized by low 

energy consumption. Since this is a new and poorly known method, it is necessary the study of a suitable 
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mathematical model for the optimization and the development of a control system. The MPC approach for 

development of control systems was applied. 

The mathematical model of the process is necessary for modeling, optimization and development of control 

systems based on the predictive model. There are papers devoted to the modeling electrical discharge 

machining (EDM) of metal products by using machines, as well as papers devoted to the modeling individual 

stages of the electric erosion process. Wuyi Ming et al. (2014) proposed, for electrical discharge machining 

process, a hybrid intelligent process model, based on finite-element method and Gaussian process regression. 

In order to predict material removal rate and surface roughness a model of single-spark EDM process has been 

done based on finite-element method, considering: the latent heat, the variable heat distribution coefficient of 

cathode and the plasma flushing efficiency. However, these models are not suitable for the simulation of 

electroerosion process for water purification, because there is a difference in the distribution of the discharge 

energy, and consequently in the products erosion formation. The aim of this paper is to develop a mathematical 

model of distribution of electrical discharges between the metal balls in the aqueous solution.  

2. Process description 

The electroerosion process for water purification is only one stage of technological process of water purification 

from contaminants. The main destination of this method is that convert soluble salts into insoluble precipitate 

that can be easily removed from water. The scheme of water purification is shown in Figure 1.  

 

Figure 1: Possible technological scheme of the water purification plant 

Technological scheme (see Figure 1) includes a tank with feed water, electrical discharge (electro erosion) of 

water purification plant, high pressure pump, membrane module for filtration of erosion products from water. 

The membrane module may be replaced by a settler tank in which the electroerosion products can be deposited. 

It will allow reduce the cost of water purification, but will worsen the degree of water purification. 

In this paper was discussed processes in the electrical discharge in water purification plant. The electrical 

discharge equipment of water purification plant consists of electrical pulse generator (PG) and the tank-reactor 

Two electrodes are located in the reactor-tank and connected to the PG. The interelectrode gap, in the tank-

reactor, is filled with metal balls and purified water. Then, electrical impulses of short duration passed through 

the layer of metal balls. Electrical discharges arise between the balls when the electrical impulses pass. These 

discharges are characterized by high energy. As a result, electrical erosion process occurs on the surface of 

metal balls. The separated erosion products are highly dispersed particles of metal. The size of the dispersed 

particles is about 1 - 100  nm. Nadezhdin et al. (2016) presented the mathematical model and the mechanism 

of formation of electroerosion holes and electroerosion products.  

The erosion products were oxidized by water. As a result, metal hydroxides and oxides were formed and were 

active coagulants. The formed metal hydroxides and oxides efficiently adsorbe impurities contained in water 

and form insoluble salts that can precipitated. Nadezhdin et al. (2016) presented the chemical reactions that 

describe chemical processes occurring in the tank-reactor and a mathematical model able to describe chemical 

reactions kinetic of electroerosion process for water purification.  

The optimum power of electrical pulses can be determined. The maximum amount of erosion products is formed 

as result of these impulses. This will optimize the energy consumption of electroerosion process for water 

purification. The task of increasing the electrical discharges between balls ("tracks" discharges) as result of one 

electrical impulse arises. The mathematical model of the distribution process of electrical discharges between 

the metal balls into aqueous solution is planned to be applied to optimize.  
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3. Mathematical modeling of the distribution of "tracks" discharges 

3.1 Application of probabilistic cellular automata for modeling of "tracks" discharges 
Place initiation and trajectory of the distribution of electrical discharges between the metal balls in the 

interelectrode gap of the electrical discharge have a stochastic character. Method of probabilistic cellular 

automata was used to develop a mathematical model of distribution of electrical discharges between the metal 

balls ("tracks" discharges). The metal balls are located in layer a certain height in the plant, depending by the 

backfilling mass. As can see in Figure 2, one ball is adjacent to 6 balls from its layer and to 3 from above and 

below layer. Thus, one ball in the plant may have up to 12 of adjacent balls. 

 

  

Figure 2: Location of metal balls in tank of the electrical discharge of water purification plant  

Considering each layer, the balls separately it can be seen that the distribution of balls satisfies of the hexagonal 

lattice cellular automata, which shown in Figure 3а. The metal ball is located in each cell of the hexagonal lattice 

(see Figure 3a). The hexagonal lattice is undergoing certain transformations for computer implementation (see 

Figure 3b). The cells of lattice can take on two values during modelling. The first value indicates that the 

discharge has passed through the cell (the ball), the second value indicates that the cell (the ball) was not 

exposed to electric discharge. 

  
a) the initial hexagonal lattice; b) lattice, which being implemented in a computer; c) scheme for determining the position of the ball 

in the cell 

Figure 3: Location of metal balls in the layer of the backfilling 

The interelectrode gap is represented as a series-parallel circuit of the resistors. The metal balls and aqueous 

solution filling the space between the electrodes are represented as a circuit of resistors. Between the balls 

there is a thin film of water, regardless of as tightly they are adjacent to each other (about 1 µm). Distribution of 

electrical discharges between the metal balls depends by the thickness of the water film between balls. The 

thinner the film of water, the smaller the resistance. The electrical discharge is distributed along the path with 

the least resistance. The thickness of the water film between the balls depends on the location of the balls in 

the plant. The balls are arranged in an arbitrary way in the apparatus. Some balls are more firmly pressed to 

each other. Accordingly, between them is smallest thickness of the water film. The balls are misaligned in the 

some direction while located in cells of the hexagonal lattice. In addition, the presence of "tracks" discharges 

between the potential electrode and the balls is a random process. This process is dependent on the location 

of the balls in the plant. Initially defined by a limiting distance between potential electrode and balls in the near 

to it row (lel-ball). If the distance between electrode and balls is less than the specified (lel-ball), then there is the 

breakdown. Thus, emerging as much of "tracks" discharges, as much as balls located at a distance of less lel-

ball from the electrode. Balls location in the plant has a stochastic character. It is assumed that the center of each 

ball can be in some permissible region a* × b* (see Figure 3c). The dimensions of this region are defined by 

using the following expressions: 

       * *, ,ball ball film ball ball filma A d A d l and b B d B d l  (1) 

a b

l1 l3

l2
l1

l2
l3

А

B

R

a*

b*

Δa

Δb

c

537



where А, B is parameters dependent on the thickness of the water film between the balls (mm); lfilm is the 

thickness of the water film between the balls (mm), about 10-3 mm. Further, given by the number of possible 

positions of the center ball in this region, Δa and Δb are calculated by using the following Eq(2) 

   
* *

max max

a b

a ba and b
n n

 (2) 

where 
max

an and 
max

bn  are the maximum number of possible positions of the center ball in the allowable region 

a* × b*. Placing of the center ball in the one of the possible positions is performed using a function that returns 

two random integers from 0 to 
max

an and 
max

bn , which specify the coordinates of the center ball in region a* × b*.  

3.2 The mathematical model of the distribution of "tracks" discharges 
The number of balls in one layer of backfilling and height of the entire layer of backfilling in the plant are 

necessary to understand how to determine the trajectory and the number of "tracks" discharges. Height of the 

entire layer of backfilling in the plant is calculated with the Eq(3) 

 1layer
ball

ball

N
h

N
 (3) 

where Nball is the number of balls in the backfilling (pcs); 
1

ballN  is the number of balls in one layer of the backfilling 

(pcs). The number of balls in one layer of the backfilling can be found by using the Eq (4): 

1
2


 pl pl

ball
ball

l w
N

d
 (4) 

where dball is diameter of the balls in backfilling (mm); lpl is length of the plant (mm); wpl is width of the plant 

(mm). The number of balls in backfilling is determined using the Eq(5) 

 fill
ball

ball

m
N

m
 (5) 

where mfill is mass of backfilling (kg); mball is mass of one ball (kg). The mass of one ball can be determined 

using Eq(6) 

       34

3
ball ball ball ball ballm V R  (6) 

where Vball is volume of ball (m3); ρball is density of ball (kg/m3); Rball is radius of ball (m). 

As said earlier, the number of arising "tracks" discharges, depends on the number balls located at a distance of 

less lel-ball from the electrode. Electric current flow through the least resistance path. One of the parameters of 

each cell is the conductivity of the film water. The conductivity of the film of water determines the current flowing 

between the two balls of backfilling, and it is defined by the formula Eq(7), which follows from Ohm's law: 





 
ball ball

U SI
l

 (7) 

where I is current of conduction (A); U is voltage of pulse (V); S is sectional area of channel (m2); γ is electrical 

conductivity of the aqueous solution (Ω-1·cm-1); lball-ball is distance between the balls.  

The balls have a probabilistic character of the distribution in the plant, so the distance between (lball-ball) the balls 

is arbitrary values, thereby changing the resistance of part an electrical circuit (of water film). Since the 

distribution of discharges is due to potential electrode and ground electrode, then discharge has three potential 

areas for further spread in balls layer (see Figure 3a,b). The following conditions are checked to find the 

minimum distance between adjacent balls: 
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finding the minimum distance (  
 mini

ball ball ball balll l ) appropriate cell changes its state and process is repeated until 

the ground electrode is not reached. The length of "tracks" discharge depends by electric field intensity (E) in 

the interelectrode gap. The electric field intensity decreases by the exponential law. The electric field intensity 
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takes a value less than value of the critical intensity (Ecrit) at a certain distance from the potential electrode. 

When E<Ecrit breakdown of the water film between the metal balls did’t happen and part of the backfilling takes 

the role of the ground electrode. The length of the "track" discharges in interelectrode gap is calculated Eq(9) 

interel.
" "  

0

ln 1

 


 
 

 

b

crit

track disch

a l
l

E

E

 
(9) 

where a = 31.93 and b = 0.0204 are empirical coefficients; linterel. is length of the interelectrode gap (mm); 

0



el ball

UE
l  is the electric field intensity near the surface of potential electrode (V/mm); lel-ball is the distance 

between the electrode and the nearest hall, about 0.001 mm. Equation (9) was obtained by the analysis of 

experimental data. The critical electric field intensity is calculated by using of the empirical formula Martin Eq(10): 
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In Eq.(10), A is an empirical constant (for water is 0.6 MV/cm in case of breakdown with cathode or 0.3 MV/cm 

in case of breakdown with anodo); ton is the electric pulses duration (µs); Sэл is area of the electrodes (cm2). 

The developed model allows the calculation of the number and the length of the "tracks" discharges, occurring 

as a result of the electrical pulses. Changing of the mass of metal balls have been loaded in the water purification 

plant is determined according Eq (11) 

  ЭЭОfill
fill Fe

dm
m m

dt
 (11) 

where 
EDM

Fem  is the formed electroerosion products mass (kg). A mathematical model for the calculation of the 

formed electroerosion products mass gas presented by Nadezhdin et al. (2016). 

4. Results and discussions 

The mathematical model developed was implemented in the form of program code. Modeling and experimental 

research were carried out with the following parameters: dball  =  6 mm, wpl  =  100 mm, lpl1  =  linterel1  =  180 mm, 

lpl2 = linterel2 = 100 mm, max 8an  and max 8bn , weight backfilling is: mfill1 = 0.430 kg, mfill2 = 0.230 kg. Metal 

balls were distributed in the tank in one layer at a given amount of backfilling. Electric pulses of duration 

ton ≈ 25 µs and amplitude U = 500 V were passed through a layer of balls. The obtained results are shown in 

Figure 4.  

 

  

  
The distance between the electrodes is 100 mm the distance between the electrodes is 180 mm 

Figure 4: The modelling results and photos of the interelectrode space  

As seen from the images (see Figure 4), modeling was performed for the electrode gap of different lengths. 

Electrical discharges did’t reach the ground electrode when distance between the electrodes is increased, since 

the electric field intensity was insufficient. During the research, 30 experiments were performed for each 
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interelectrode gap. The number of "tracks" discharge was different each time. The obtained results are 

presented in Table 1.  

Table 1: The data of experiments and modeling 

The number of 

"tracks" 

discharge 

The length of the distance between electrodes, mm 

100 180 

The probability of occurrence, % The probability of occurrence, % 

Model Experiment Model Experiment 

2 10.0 10.0 73.3 66.6 

3 70.0 73.3 20.0 26.7 

4 13.3 16.7 6.7 6.7 

5 6.7 3.3 0 0 

 

Experimental results shows that a number of "tracks" discharge equal to three is characteristic for an 

interelectrode distance of 100 mm while increasing the interelectrode distance at 180 mm the number depresse 

at two (see Table 1). Discrepancy between the experimental and computational data for the 100 mm of 

interelectrode gap is equal 3.4 % and for the 180 mm of interelectrode gap is equal 5.2 %.  

As can be seen from the obtained data (see Figure 4 and Table 1) not all the balls are processed case of 

insufficient power electric pulses. Accordingly, the number and length of the "tracks" discharge is decreases. 

Surplus energy is spent on heating the water in the plant when the power of electric pulses have too large 

values. Therefore, the determination of the electrical pulses optimal power is also an important task. For solve 

this task, planned to use mathematical model developed in this research.  

5. Conclusions 

In this paper was presented a mathematical model of the distribution of electrical discharges between the metal 

balls in the aqueous solution. During the research was proposed a new approach to the modeling of the 

distribution of electrical discharges between the metal balls in the interelectrode gap in the water purification 

process. The proposed approach was based on the use of probabilistic cellular automata. Therefore, in the 

paper was reported an empirical relationship length of "tracks" discharge on the electric field intensity in the 

interelectrode gap. The modeling results were compared with experimental data. The discrepancy between the 

data was about 5 %. Obtained data confirm the adequacy of the developed model and allow to use it in the 

further work.  
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