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Natural gas transmission through an extensive pipeline network is an energy consuming process required gas 
compression due to significant pressure drop. The main difficulties in optimising a natural gas transmission 
network are the nonconvexities of the pressure drop and the compressor constraints. To address the 
nonconvex issues, a novel model is proposed and demonstrated using an energy minimisation problem of 
natural gas transmission networks. The new model overcomes the nonconvexity of the pressure drop 
constraints by convexifying them into convex constraints, and addresses the nonconvex compressor 
constraints by rewriting them in to convex constraints and concave constraints. The model is formulated as a 
mixed-integer nonlinear programming (MINLP) model and tested by two different sizes networks. 
Computational results show the proposed model significantly reduces the solution time and improve solution 
quality. 

1. Introduction 

Natural gas is becoming one of the most important energy sources. It is estimated the global consumption of 
natural gas will increase by 69 % from 2012 to 2040 and will account for 24 % of the primal energy 
consumption (US Energy Information Administration, 2016). Much attention has been paid to natural gas 
production (Zhang et al., 2016), supply chain (Heckl et al., 2015), and power generation problems (Ali et al., 
2016). To support the fast-growing natural gas industry, efficient and effective transmission networks are 
required to transport natural gas from the production region to the consumption region. In many cases, the 
transmission networks are extensive network systems which consist of pipelines, compression stations, and 
other components. Due to the long distance transportation and large gas volume, the transmission networks 
often consume large amount of energy for gas compression, which makes up the majority of the operating 
cost. It is estimated that a well-designed network reduces 20 % of the energy consumption for the compressor 
stations.(Schroeder, 1996) Therefore, it is economically attractive to optimise the transmission networks 
design to achieve higher energy efficiency. 
However, after decades of construction and expansion, the transmission networks have developed into large 
and complicated systems, which lead to large model size. Moreover, the optimisation problem is exacerbated 
by the nonconvex pressure drop constraints of pipelines, which are the main elements of the networks. 
Combined with the nonconvex compressor constraints, the energy minimisation problem of natural gas 
transmission networks is regarded as a difficult problem featuring large model size and strong nonconvexity. 
To overcome these difficulties, in this paper, we propose a novel model for the energy minimisation problem of 
natural gas transmission networks. 

2. Mathematical model 

We present an MINLP model to minimise the energy consumption of natural gas transmission networks based 
on the definition as follows. A natural gas transmission network consists of nodes and arcs. The nodes include: 
the sources supplying natural gas to the networks at certain pressure; the users with certain gas demand and 
pressure requirements; and the junctions that has no supply or demand. The arcs include pipelines and 
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compressor stations. The length and diameters of the pipelines are fixed. The compressors are assumed to be 
centrifugal type. For simplicity, it is also assumed each compressor station has one compressor. We also 
assume the networks are in steady state with constant gas supply and demand at the nodes. The network 
layout is fixed, and the length and the diameters of the pipelines are known. 
The main feature of our model is the convex pressure drop constraints Eq(5) and Eq(6), which avoid the 
nonconvexity resulting from the traditional nonconvex formulation (Eq(22). Also, the nonconvex compressor 
constraint Eq(23) is reformulated into convex constraints and concave constraints Eq(13)-Eq(15), which are 
more computationally efficient. 
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The objective is to minimise the energy consumption of the compressors Eq(1). The model subjects to the 
mass balance constraints Eq(2)-Eq(3), the pressure drop constraints Eq(4)-Eq(12), the compressor 
constraints Eq(13)-Eq(17), and the bounds of the variables Eq(18)-Eq(20). 
The index i,j are the nodes of the network. I is the set of the nodes, Aa is the set of the active arcs 
(compressors), Ap is the set of the passive arcs (pipelines), and A is the set of the arcs (Ap∪Aa). 
For the variables, wi,j denotes the energy consumption of compressor i,j. mi,j denotes the mass flow rate of 
pipeline i,j. We define the flow rate is positive if the gas flows from node i to j, and negative from j to i. πi is the 

square of the pressure at node i (π=p2). ∆πi,j
+  and ∆πi,j

-  are the disaggregated variables representing the 
difference of the pressure square (πi-πj) in positive and negative direction (see Figure 1). xi,j is a binary 
variable to denote the flow direction. We define the flow direction is positive when xi,j=1, and negative when 
xi,j=0. cri,j represents the square of compression ratio, and msi,j is an auxiliary variable of mi,j. yi,j is a binary 
variable to denote the operation of the compressors. The authors sefined define the compressor is operating 
when yi,j=1, and is bypassed when yi,j=0. 

 

Figure 1: Flow direction of a pipeline. 

In terms of the parameters, Si denote the supply at node i. If Si>0, the node is a gas source; If Si<0, the node 
is a user; and if Si=0, the node is a junction. Ki,j the per length resistance of the pipeline calculated by: 

Ki,j=
K'Li,j

Di,j
5 Fi,j    i,j∈Ap (21) 

where Fi,j is friction coefficient, K’ is a generic constant for fully turbulent gas flow (K’=1.234×10-6TavgZavg), Li,j is 
the length of the pipeline, and Di,j is the inner diameter of the pipeline. 
Eq(2) indicates the difference of the outflow (∑ mi,jj|(i,j)∈A ) and the inflow (∑ mj,ij|(j,i)∈A ) of a node equals to the 
supply (Si) of the node. Eq(3) and Eq(4) disaggregate the flow rate variables and square pressure difference 

variables. Eq(5) and Eq(6) define the relation of ∆πi,j
+  and ∆πi,j

-  with mi,j
+  and mi,j

- . Eq(7)-Eq(10) enforce ∆πi,j
+  and 

mi,j
+  equal to 0 if the flow direction is negative, and ∆πi,j

-  and mi,j
-  equal to 0 if the flow direction is positive. Eq(10) 

and Eq(11) are linear cuts to tighten the relaxation. Eq(13) calculates the energy consumption of the 
compressors. Eq(14) and Eq(15) define the variable cri,j. and msi,j, respectively. Eq(16) guarantees the 
discharged pressure of the compressors is no less than the suction pressure. Eq(17) ensures cri,j is bounded 
when the compressor is operating, and force cri,j equal to 1 when the compressor is bypassed. 
Different from the typical pressure drop constraints written as equations (Eq.(22)), in the new model the 
pressure drop is formulated into convex inequality constraints (Eq(5) and Eq(6)), which avoids the 
nonconvexity resulted from nonlinear equations. Moreover, we replace the pressure variables p with new 
variables π to avoid the quadratic terms (i.e. pi

2). The bilinear absolute value terms mi,j|mi,j| are also eliminated 

by introducing binary variables xi,j to denote flow direction and disaggregated variables ∆πi,j
+ , ∆πi,j

- , mi,j
+ , mi,j

- . 

pi
2-pj

2=Ki,jmi,jหmi,jห    i,j∈Ap (22) 

where pi is the pressure at node i. 
Similar to the pressure drop constraint, we rewrite the compressor constraint from equality constraints (Eq(23)) 
into inequality constraints (Eq(13)-Eq(15)) to avoid the nonconvexity. Also, new variables cri,j and msi,j are 

introduced to reformulate the nonconvex constraint functions mi,j൫pj/pi൯n into concave functions ݉ݏ௜,௝1-
n

௜,௝n2ݎ2ܿ . wi,jൌCi,jmi,j ൤൬pjpi൰n -1൨ 				i,j∈Aa (23) 
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3. Examples 

The proposed model is tested and compared with the nonconvex model by 2 transmission networks adopted 
from (Wu et al., 2000). The models are formulated on GAMS 24.5.3 (Brooke et al., ) on an Intel ® I5-2400 
CPU @3.10 GHz, 8 GB RAM PC. The models are tested by deterministic MINLP solvers BARON 
(Tawarmalani and Sahinidis, 2005) and SCIP (Achterberg, 2009). The time limit is set to 7200 s with relative 
optimality tolerance of 10-6. 

3.1 Example 1 
Example 1 is a small size network to verify the models. The network layout of Example 1 is presented in Table 
3. The network has 10 nodes with 1 source (node 1), 5 users (nodes 5-7, 9, 10), 4 junctions (nodes 2-4, 8). 
The arcs include 6 pipelines and 3 compressors ((2,3), (3,4), (3,8)). All pipelines have the same length Li,j 

=3000 m, diameter Di,j=0.762 m, and friction factor Fi,j=0.0085. Table 1 lists the parameters of the nodes. 
Since Example 1 is a tree-shaped network with fixed supply/demand, the flow rate is known for all of the arcs. 

 
Figure 2: Network layout of Example 1 

Table 1: Nodal parameters of Example 1 

Node  Pi
lo (MPa) Piup (MPa) Si (kg/s) Node  Pi

lo (MPa) Piup (MPa) Si (kg/s) 
1 4.137 4.826 8 6 3.103 5.516 -1.5 
2 4.137 5.516 0 7 3.103 5.516 -1.5 
3 3.103 5.516 0 8 3.103 5.516 0 
4 3.447 5.516 0 9 3.103 5.516 -1 
5 3.103 5.516 -1 10 3.103 5.516 -3 
 
Table 2 compares the results of the models of Example 1. The proposed model find the same optimal solution 
0.6882 as the nonconvex model, and therefore, the new model is valid. Additionally, since the network is tree-
shaped with fixed flow rate, only the discharged pressure of the compressors is the variable that will affect the 
objective value. Together with the small number of pipelines and compressors, both models reach the global 
optimal solution in less than 1 s. 

Table 2: Model Performance of Example 1 

Model BARON SCIP 
Solution CPU time (s) Solution CPU time (s) 

Proposed 0.6882 0.02 0.6882 0.03 
Nonconvex 0.6882 0.11 0.6882 0.19 

3.2 Example 2 

Example 2 is a medium size network to test the performance of the models. Figure 3 illustrates the network 
layout of Example 2. The network has 48 nodes, 43 pipelines, and 8 compressors ((2,9), (8,10), (12,13), 
(20,21), (21,22), (20,48), (24,46), (48,25)). The pressure limits of the nodes are [0.445 MPa, 10.445 MPa], 
except for node 1 ([6.305 MPa, 9.065 MPa]) and node 3 ([6.925 MPa, 8.030 MPa]). Parameters of the nodes 
and pipelines are listed in Table 3 and Table 4, respectively. 
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Table 3 Nodal parameters of Example 2 

Node ௜ܵ (kg/s) Node ௜ܵ (kg/s) Node ௜ܵ 
(kg/s)Node ௜ܵ 

(kg/s)
1 6 13 0 25 -5.5 37 0 
2 0 14 0 26 0 38 -0.3 
3 2 15 1 27 -0.5 39 -0.3 
4 2 16 -0.5 28 0 40 -0.3 
5 2 17 0 29 0 41 -0.3 
6 2 18 1 30 -0.3 42 -0.4 
7 2 19 0 31 -0.3 43 -0.4 
8 0 20 4.5 32 0 44 -0.4 
9 -4 21 0 33 -0.3 45 -1 
10 0 22 0 34 -0.3 46 -2 
11 -1 23 -2 35 -0.3 47 -1.8 
12 0 24 0 36 -0.3 48 0 
 

Figure 3: Network layout of Example 2 

Table 4: Pipeline parameters of Example 2 

Pipelines Li,j (m) Di,j (m) Fi,j Pipelines Li,j (m) Di,j (m) Fi,j 
(1,2) 10101.5 0.4572 0.0108(30,31) 5050.7 0.3048 0.013 
(3,4) 4517.5 0.4572 0.0108(31,32) 4517.5 0.3048 0.013 
(4,7) 5150.8 0.4572 0.0108(32,33) 4517.5 0.3048 0.013 
(5,6) 5150.8 0.3048 0.013 (33,44) 4517.5 0.3048 0.013 
(6,7) 5150.8 0.4572 0.0108(29,34) 5050.7 0.3048 0.013 
(7,8) 5150.8 0.6096 0.009 (34,35) 4517.5 0.3048 0.013 
(9,11) 10101.5 0.4572 0.0108(35,36) 4517.5 0.3048 0.013 
(10,11) 5150.8 0.6096 0.009 (36,43) 4517.5 0.3048 0.013 
(11,12) 10101.5 0.9144 0.0085(28,37) 5050.7 0.3048 0.013 
(13,14) 10101.5 0.4572 0.0108(37,38) 5050.7 0.3048 0.013 
(14,19) 10101.5 0.4572 0.0108(38,39) 5050.7 0.3048 0.013 
(15,19) 10101.5 0.4572 0.0108(39,40) 5050.7 0.3048 0.013 
(19,20) 10101.5 0.4572 0.0108(40,41) 5050.7 0.3048 0.013 
(13,17) 10101.5 0.6096 0.0095(41,42) 5050.7 0.3048 0.013 
(17,16) 10101.5 0.4572 0.0108(43,42) 4517.5 0.3048 0.013 
(17,18) 10101.5 0.6096 0.0095(44,43) 4517.5 0.3048 0.013 
(18,20) 10101.5 0.6096 0.0095(45,44) 8329.9 0.4572 0.0108
(25,26) 10101.5 0.4572 0.0108(45,47) 5714.3 0.6096 0.009 
(26,27) 7142.9 0.4572 0.0108(46,45) 11517.5 0.6096 0.009 
(26,28) 10101.5 0.4572 0.0108(22,23) 11517.5 0.6096 0.009 
(28,29) 5050.7 0.3048 0.013 (23,24) 11428.6 0.6096 0.009 
(29,30) 4517.5 0.3048 0.013     
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Example 2 is more complicated than Example 1 for its looped structure and the increase in the number of 
pipelines and compressors. Table 5 compares the performance of the proposed model and the nonconvex 
model. We observe that the proposed model reaches the global optimal solution within time limit. This is 
because the pressure drop constraints dominate in the model, and the convexification of the pressure drop 
constraints greatly reduces the nonconvexity of the model and the solution time. 

Table 5: Model Performance of Example 2 

Model BARON SCIP 
Solution CPU time (s) Solution CPU time (s) 

Proposed 2.91105 47.89 2.91105 9.25 
Nonconvex 3.73188 0.37 - 7200 

4. Conclusions 

A new MINLP model is presented for the energy minimisation of natural gas transmission networks. The 
model was tested by a small and a medium size network respectively for validating its feasibility and its 
efficiency for solution. By convexifying the pressure drop constraints and replacing the nonconvex compressor 
constraints by a set of concave and convex constraints, the proposed model works much efficient in finding 
good solutions.  
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