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The industrial production of mononitrobenzene (MNB) is currently achieved with high yields by liquid phase 
nitration of benzene (Bz). However, the environmental footprint of this process is highly dependent on the 
minimization of reaction by-products, such as nitrophenols, whose elimination and disposal procedures are 
subjected to very strict regulations. The mechanisms behind their formation are still not completely understood 
and would benefit from detailed information about their distribution in the reaction mixture. This work reports 
predictive models for the distribution ratio (𝐷) of the by-products 2,4-dinitrophenol (DNP) and 2,4,6-
trinitrophenol (TNP) in a bi-phasic organic-aqueous system representative of industrial nitrators. 
Equilibrium concentrations of DNP and TNP were measured at 30 ºC for different initial conditions, namely: 
composition of the aqueous (H2SO4 + water) and organic (Bz + MNB) phases, their weight ratio, and the 
concentration of nitrophenols. Multivariate linear regression (MLR) models were built with a sub-set of the 
experimental data and confirmed by external validation, exhibiting high fit quality (𝑅2 and 𝑅Adj

2 > 0.900) and 
prediction capability (𝑅Pred,DNP

2 = 0.936; 𝑅Pred,TNP
2 = 0.962). The most significant predictor was the equilibrium 

concentration of sulphuric acid in the aqueous phase, followed by benzene concentration in the organic 
phase. The distribution ratios of DNP and TNP decrease with the increase of these concentrations.  A higher 
affinity of DNP with the organic phase was confirmed by 𝐷DNP ≈ 2𝐷TNP.  

1. Introduction 

Mononitrobenzene (MNB) is produced industrially by nitration of benzene with a mixture of sulphuric and nitric 
acids (mixed acid). The formation of undesired by-products, such as 2,4-dinitrophenol and 2,4,6-trinitrophenol, 
reduces the selectivity, yield and economy of the process, and it compromises final product specifications. The 
toxicity of nitrophenols (NP) affects the environmental footprint of the process. Moreover, when MNB is used 
for aniline production the presence of NP reduces the catalyst lifetime. Consequently, industrial processes 
include expensive purification stages and elimination procedures complying with strict environmental 
regulations.  
An enormous effort has been made to understand and mitigate NP formation being of note the works of 
Hanson et al. (1976), Burns and Ramshaw (1999) and Quadros et al. (2004). Nonetheless, detailed 
mechanims of formation and mass transfer have not been established yet leading to the use of statistical 
models to account for their presence when modelling benzene nitration (Nogueira et al., 2013). Moreover, 
some important properties of NP are also lacking, such as their equilibrium distribution in the two liquid 
immiscible phases characteristic of the nitration system. The correlation of Zaldivar et al. (1995), that 
describes the equilibrium distribution of benzene as a function of temperature and aqueous phase 
composition, has been considered appropriate for NP (Dummann, 2009) but its validity has not been 
confirmed. 
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Equilibrium distribution of a solute in dilute liquid-liquid (L-L) systems is described by experimental parameters 
such as distribution constant, 𝐾𝐷 in Eq(1), and distribution ratio, 𝐷 in Eq(2) (Berthod and Carda-Broch, 2004). 
The former is specific for the cases of solute partition in one chemical form (e.g. molecular, ionic, elemental) 
being defined, in Eq(1), as the ratio of molar concentrations of the solute 𝑖 in the organic and in the aqueous 
phases (𝐶𝑖

𝑂 and 𝐶𝑖
𝐴, respectively).   

𝐾𝐷 =
𝐶𝑖

𝑂

𝐶𝑖
𝐴 (1) 

On the other hand, 𝐷  is specific for solutes which may be present in different chemical forms being defined as 
the ratio of total molar concentration of all forms of solute 𝑖 between the two phases. For instance, NP are 
ionisable compounds (AH ⇌ A− + H+)  that can be present in molecular or ionic forms and, consequently, 𝐷 is 
defined by Eq(2).  

𝐷 =
𝐶AH

𝑂 + 𝐶A−
𝑂

𝐶AH
𝐴 + 𝐶A−

𝐴  (2) 

The curve representing the influence of pH on 𝐷 exhibits an inverse sigmoidal profile, with the molecular form 
(AH) being more soluble in the organic phase, at low pH, and the ionic form (A−) being more soluble in the 
aqueous phase, at high pH. Nevertheless, at low pH, when ionization is minimized, 𝐷 ≅ 𝐾𝐷 (Berthod and 
Carda-Broch, 2004). Azevedo (2015) reported that ionization of DNP and TNP in a MNB-water system was 
minimized at pH < 0.5. In the present work the equilibrium distribution of NP in a bi-phasic organic-aqueous 
system representative of industrial nitrators (but in the absence of reaction, i.e. without nitric acid) will be 
described by the distribution ratio, 𝐷𝑗, where j represents DNP or TNP. 

2. Statistical-oriented approach 

Simple and reliable prediction models can be developed by a statistical-oriented approach integrating three 
main steps: 1) identification of the main variables (screening); 2) model development based on a training data 
set and fit analysis; and, 3) model validation with a new testing data set. Both training and testing data sets 
can be obtained using a statistical design of experiments (DOE) approach, namely by a factorial design to 
assess the individual and interaction effects of the predictor variables (factors) with a minimum number of 
experiments. If the predictor variables, 𝑥, are uncorrelated the method of least squares for multivariate linear 
regression (MLR) can be implemented over the training data set (Montgomery et al., 2012) in order to build 
models of the response variable, 𝑦, by Eq(3): 

𝑦 = 𝛽0 + ∑ 𝛽𝑔𝑥𝑔

𝑧

𝑔=1

+ ∑ ∑ 𝛽𝑔ℎ𝑥𝑔𝑥ℎ

𝑧

ℎ=1+𝑔

𝑧−1

𝑔=1

+ 𝜀 (3) 

where 𝛽0 designates the intercept, 𝛽𝑔 are the partial regression coefficients for the 𝑧 input variables terms, 
𝛽𝑔ℎ   represent the coefficients of the 2nd order interaction terms and 𝜀 is the error of the model. According to 
the MLR assumptions the error is identically distributed with a normal distribution of zero mean and constant 
variance 𝜎2 (homoscedasticity).  
Analysis of fit encompasses an evaluation of the significance of the model, the MLR residual assumptions, 
and the fit quality of the prediction models developed (�̂�). Significance can be assessed by hypothesis testing 
(Montgomery et al., 2012) applied to the whole model (ANOVA for regression) or to the individual terms. 
Statistical significance of the whole model is easily assessed by comparing the ANOVA p-value with the 
adopted significance level 𝛼 (𝛼 = 0.05): if the p-value < 𝛼, the model is deemed significant. The same 
approach is followed for the individual hypothesis tests performed on the variables’ 𝛽 coefficients. The MLR 
residual assumptions are validated by analysis of residuals (𝑒𝑐 = 𝑦𝑐 − �̂�𝑐 , 𝑐 = 1,2, … , 𝑁) of the 𝑁 observations, 
which are expected to be independent and identically distributed with zero mean and constant variance. 
Homoscedasticity can be checked using a plot of the residuals, 𝑒𝑐 , versus the estimated values, �̂�𝑐 
(Montgomery et al., 2012). Normality can be evaluated by a QQ-plot or a Shapiro-Wilk test applied to 𝑒𝑐 (SAS 
Institute, 2016). Detection and influence of outliers in the model is analysed by the studentized residuals 
(defined as 𝑟𝑐 = 𝑒𝑐 SE(𝑒𝑐)⁄  where SE(𝑒𝑐) is the standard error of the residuals) and Cook’s distance, 
respectively (Montgomery et al., 2012). A large Cook’s distance meaning a significant specific weight of that 
observation in the model. Fit quality is characterized by the coefficient of determination, 𝑅2, and by the 
adjusted 𝑅2, 𝑅Adj

2 , with ideal values being close to the maximum value of 1. These coefficients measure how 
much of the variance of the response is explained by the regressors in the MLR model, with 𝑅Adj

2  being 
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adjusted to penalize overfitting (because it accounts for the number of estimated coefficients, 𝛽). By definition 
𝑅Adj

2  is always smaller than 𝑅2, but for a good fit it is desirable that 𝑅Adj
2 ≅ 𝑅2. For model comparison it is 

important to evaluate the root mean squared error (RMSE), defined by Eq(4), which is an estimate of the 
standard error of the model (√�̂�2) (Montgomery et al., 2012).  

RMSE = √
∑ (𝑦𝑐 − �̂�𝑐)𝑁

𝑐=1

𝑁 − 𝑝
 (4) 

An external validation methodology is preferred to evaluate the prediction capability of the fitted MLR models 
(Esbensen and Geladi, 2010). Ths requires a new test data set, to which the model is applied to calculate the 
coefficient of determination of prediction, 𝑅Pred

2 , as well as the root mean squared error of prediction 
(RMSEPred), defined by Eq(5), 

RMSEPred = √
∑ (𝑦𝑡 − �̂�𝑡)𝑁𝑡

𝑡=1

𝑁𝑡
 (5) 

where 𝑁𝑡 is the number of representative and independent experiments used to assess the model. 
In this work, the development and analysis of MLR models for prediction of 𝐷𝑗 in L-L system was carried out 
with the software JMP® PRO version 12.1.0 (SAS Institute Inc.). 

3. Material and methods 

In the first stage of this study, experimental data were collected to model the distribution of DNP and TNP 
between organic and aqueous phases mimicking the reaction mixture of the nitration process. Benzene (99.94 
wt %, Gadiv Petrochemical Industries Ltd) and mononitrobenzene (99.995 wt %, CUF – Químicos Industriais 
S.A.) were mixed to prepare organic phases with 10, 30 and 50 wt % Bz. Precise amounts (± 0.0001 g) of 2,4-
dinitrophenol (97 wt %, Aldrich) and 2,4,6-trinitrophenol (99 wt %, BDH) were added to these organic mixtures 
and dissolved using ultrasound to ensure homogeneity. Sulphuric acid (95-97 wt %, Merck) was diluted with 
high purity water (Barnstead E-pure purification system) to obtain solutions in the range 50-75 wt %. Sulphuric 
acid content was confirmed by titration following the procedure described in Quadros et al. (2004). 
Different weight ratios of aqueous/organic phases, in the range 2-8, were mixed according to the shake flask 
method (Berthod and Carda-Broch, 2004), adapted for the current study with shorter agitation (≈ 2 min) and 
decantation times (≈ 60 min) as suggested by Azevedo (2015). The tests were carried out at 30 ºC (± 0.1 oC) 
using a F25-ED thermostatic bath from Julabo. Phase separation was achieved by decantation followed by 
centrifugation (1 min at 1250 rpm) in a Rotanta 460 centrifuge from Hettich. Samples of equilibrium aqueous 
phases were prepared by collection of aqueous phase aliquots (ca. 0.5 g) and dilution with water (10 times). 
These samples were analysed by HPLC to measure the equilibrium weight fractions of DNP and TNP 
following the procedure described in Costa et al. (2013). The measurements were carried out in triplicate 
using an Elite LaChrom HPLC from VWR Hitachi equipped with a LiChroCART® 125-4 column (5 µm, 125 × 4 
mm) and a LiChroCART® 4-4 guard column (5 µm, 4 × 4 mm), both from Merck. The HPLC was calibrated for 
a NP weight fraction range of 1-5×10-6 in acidic medium (diluted samples with 1 wt % sulphuric acid) with 
𝑅DNP

2 = 0.9998 and 𝑅TNP
2 = 0.9991. The HPLC system was washed several times between runs. The software 

EZChrom Elite version 3.1.7 from Agilent was used to calculate peak areas. A repeatability and reproducibility 
study was performed confirming the capability and adequacy of the measurement system for this purpose. 
The weight fractions of NP in the organic phase were calculated by mass balance assuming an immiscible L-L 
system.  

4. Results and discussion 

A statistical-oriented approach was applied to develop MLR models for the prediction of 𝐷𝑗 (�̂�𝑗) in L-L system 
at equilibrium. The main variables were identified in a previous work (unpublished results) being the 
equilibrium composition of the phases, expressed in terms of molar concentration of sulphuric acid in the 
aqueous phase (𝐶SA,𝑒

𝐴 ), and of benzene (𝐶Bz,𝑒
𝑂 ) and nitrophenol 𝑗 (𝐶𝑗,𝑒

𝑂 ) both in the organic phase. For each 
nitrophenol model, equilibrium temperature and the presence of the other nitrophenol were found to be 
irrelevant.  
The models for �̂�𝑗 were developed using the training data set and validated on new independent testing data 
set. The equilibrium conditions of the data sets were defined by DOE, applied to the following experimental 
domain: 6.946 < 𝐶SA,𝑒

𝐴 < 12.42; 1.471 < 𝐶Bz,𝑒
𝑂 < 6.442; 0.414 < 𝐶DNP,𝑒

𝑂 ×102 < 1.24; 2.85 < 𝐶TNP,𝑒
𝑂 ×103 < 9.87; 
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and molar ratio 4.0412 <  𝑛𝑒
𝐴 𝑛𝑒

𝑂⁄ < 30.262. The training set consisted of 34 duplicate experiments given by 17 
conditions of a two-level full factorial design with 𝐶SA,𝑒

𝐴 , 𝐶Bz,𝑒
𝑂 , and 𝐶𝑗,𝑒

𝑂  as factors and one central point. The 
testing set was composed of 9 experiments resulting from a two-level fractional factorial for the same factors 
and one central point.  
The �̂�𝑗 models developed for DNP and TNP are in Eq(6) and Eq(7), respectively.  

�̂�DNP = 175 − 11.7𝐶SA,𝑒
𝐴 − 3.45𝐶Bz,𝑒

𝑂 + 0.852(𝐶SA,𝑒
𝐴 − 9.682)(𝐶Bz,𝑒

𝑂 − 3.968) (6) 

�̂�TNP = 73.7 − 4.60𝐶SA,𝑒
𝐴 − 2.08𝐶Bz,𝑒

𝑂 + 701𝐶TNP,𝑒
𝑂 + 0.369(𝐶SA,𝑒

𝐴 − 9.682)(𝐶Bz,𝑒
𝑂 − 3.968) (7) 

The models and their respective regressor terms are statistically significant as indicated by the low p-value 
(< 𝛼 = 0.05) of the corresponding test statistics (Table 1). From these results one can conclude that 
composition of both phases has a great influence on 𝐷𝑗, with higher concentrations of H2SO4 in the aqueous 
phase and of Bz in the organic phase leading to lower values of 𝐷𝑗. Interactions terms between the two 
variables were also identified for both models. The concentration of TNP may have a slight influence on 𝐷TNP 
(p-value = 0.0554   ≅ 𝛼) and yet the concentration of DNP does not influence 𝐷DNP (p-value > 0.1). The 
analysis of the MLR coefficients (Table 1) according to the magnitude of test statistic t, showed that the order 
of significance of each regressor variable was: 𝐶SA,𝑒

𝐴 > 𝐶Bz,𝑒
𝑂  (> 𝐶TNP,𝑒

𝑂  in the case of TNP). The triangular 
sensitivity indicators in Figure 1 represent the partial derivative of the prediction trace function of the 
independent variables at those conditions. Their height helps to visualize the higher influence of 𝐶SA,𝑒

𝐴  on 𝐷𝑗, 
followed by 𝐶Bz,𝑒

𝑂 , and an increase in these concentrations leads to lower 𝐷𝑗 values. Furthermore, Figure 1 also 
shows that the equilibrium concentration of TNP in the organic phase can have a minor statistical importance 
in the explanation of 𝐷TNP. 

Table 1: Parameters, fit and prediction capabilities analysis results of the models in Eq(6) and in Eq(7). 

Model 
Coefficients 

RMSE 
ANOVA Fit Quality Prediction 

capability 

�̂� �̂�𝛽 Test 
statistic (t) p-value 95 % CI p-value 𝑅2 𝑅Adj

2  𝑅Pred
2  RMSEPred 

�̂�DNP 

175 6.71 26.2 < 0.0001 [162, 189] 

9.27 < 0.0001 0.931 0.924 0.936 7.47 
-11.7 0.615 -19.0 < 0.0001 [-13.0, -10.4] 
-3.45 0.662 -5.21 < 0.0001 [-4.80, -2.10] 
0.852 0.249 3.43 0.0018 [0.344, 1.36] 

�̂�TNP 

73.7 4.37 16.9 < 0.0001 [64.8, 82.6] 

4.38 < 0.0001 0.919 0.908 0.962 2.74 
-4.60 0.296 -15.6 < 0.0001 [-5.21, -4.00] 
-2.08 0.322 -6.45 < 0.0001 [-2.73, -1.42] 
701 351 2.00 0.0554 [-17.4, 1419] 

0.369 0.117 3.14 0.0038 [0.129, 0.609] 
 

 

Figure 1: Plot of the sensibility indicator (▼) for the mean point of the experimental range (˗ ˗ ˗) in the prediction 

traces of �̂�𝑗 (─) with 95 % confidence interval (---).  

The high values of 𝑅2 and 𝑅Adj
2  (> 0.900) proved good fit quality of the MLR models, slightly better for DNP. 

Prediction capability of both models was high, mainly for TNP (𝑅Pred
2 ≈ 0.96), and the RMSE and  

RMSEPred values were also satisfactory. The quality of the MLR fittings is illustrated in Figure 2, which 
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presents the experimental versus predicted values of 𝐷𝑗 located at or near the bisector line, within the 95 % 
confidence interval (CI).  
 

 

Figure 2: Experimental 𝐷𝑗 and residuals (𝑒𝑐) versus predicted values for the training set. 

In Figure 2 it can be seen that the values of 𝐷DNP are about twice the values of 𝐷TNP. Before this work, 𝐷DNP 
and 𝐷TNP were obtained with the correlation of Zaldivar et al. (1995) assuming 𝐷𝑗 ≈  𝐾𝐷,𝑗 (Dummann, 2009). 
When comparing those predicted values with these experimental results the relative errors are 77-99 % and 
89-100 % for DNP and TNP, respectively. 
The residuals (𝑒𝑐) plots presented in Figure 2, reveal a heteroscedastic behaviour (funnel pattern), which 
induced a non-normal distribution on 𝑒𝑐 for both models. Therefore, the assumptions of conventional MLR 
models, namely homoscedasticity and normal distribution of residuals were not fully validated. Consequently, 
weighted least squares (WLS) models were assessed, which means the squared residuals are weighted by 
the variances of residuals (1 𝜎𝑒𝑐

2⁄ ), so that an observation with a small variance has a higher weight than one 
with a large variance (Montgomery et al., 2012). The �̂�𝑗 models obtained by WLS are represented by Eq(8) 
and Eq(9).  

�̂�DNP,WLS  = 174 − 11.5𝐶SA,𝑒
𝐴 − 3.40𝐶Bz,𝑒

𝑂 + 0.840(𝐶SA,𝑒
𝐴 − 9.682)(𝐶Bz,𝑒

𝑂 − 3.968) (8) 

�̂�TNP,WLS  = 76.1 − 4.75𝐶SA,𝑒
𝐴 − 1.95𝐶Bz,𝑒

𝑂 + 405𝐶TNP,𝑒
𝑂 + 0.443(𝐶SA,𝑒

𝐴 − 9.682)(𝐶Bz,𝑒
𝑂 − 3.968) (9) 

The coefficients of the regressor terms of the predictive WLS models for 𝐷𝑗 are within the 95 % CI of the 
correspondent models, shown in Table 1. The only hypothesis test with a p-value higher than 𝛼, even though 
very close, was obtained for coefficient of 𝐶TNP,𝑒

𝑂  (p-value = 0.0804). Prediction capability of WLS and 
conventional MLR models for the training and test set was evaluated, with the values of 𝑅Pred

2  and RMSEPred 
being identical for 𝐷DNP and slightly better for conventional MLR, in the case of 𝐷TNP. These results validate 
the 𝐷𝑗 MLR models expressed by Eq(6) and Eq(7) for the characterization of NP equilibrium distribution in L-L 
systems representative of Bz nitration. 

5. Conclusions 

Distribution ratio of DNP and TNP in a L-L system mimicking the industrial conditions for benzene nitration 
were experimentally assessed and successfully modelled following a statistical-oriented approach. 
Experimental values for 𝐷DNP (between 10 and 120) were nearly twice the values of 𝐷TNP (between 5 and 55) 
corroborating the higher solubility of DNP in the organic phase. These values were also very distinct from 
those calculated for Bz distribution at similar conditions. Predictive MLR models based on equilibrium data 
were developed for 𝐷𝑗 exhibiting good fit and prediction capabilities (𝑅2, 𝑅Adj

2  and 𝑅Pred
2  > 0.900). Overall the 
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models show that 𝐷𝑗 is strongly influenced by the phase composition, with a higher concentration of sulphuric 
acid in the aqueous phase or of benzene in the organic phase leading to lower values of 𝐷𝑗 in the L-L system. 
This work provides useful information about the distribution of nitrophenols in benzene nitration L-L systems 
and presents simple and reliable statistical models for 𝐷𝑗 which can be applied in more comprehensive kinetic 
models. 
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Notation 

Bz Benzene 𝑅2 Coefficient of determination 𝑔, ℎ Regressor indexes 
𝐶 Molar concentration, mol/dm3 RMSE Root mean squared error 𝑖 Generic specie 
CI Confidence interval SE Standard error 𝑗 DNP or TNP 
𝐷 Distribution ratio t Test statistic 𝑂 Organic 

DOE Design of experiments TNP 2,4,6-Trinitrophenol Pred Prediction 
DNP 2,4-Dinitrophenol WLS Weighted least squares 𝑡 Observation index of  

test set 𝑒 Residuals 𝑥 Regressor  
𝐾𝐷 Distribution constant y Response  

MLR Multivariate linear regression 𝑧 Number of regressor terms Greek letters and symbols 
MNB Mononitrobenzene   𝛼 Significance level 

𝑁 Number of observations Subscript and superscript 𝛽 Coefficient regressor 
𝑛 Number of moles, mol 𝐴 Aqueous 𝜀 Error 

NP Nitrophenols Adj Adjusted 𝜎2 Variance 
𝑝 Number of parameters 𝛽 𝑐 Observation index of training set ^ Estimate 
𝑟 Studentized residuals 𝑒 Equilibrium condition   
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