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Emission standards forced the manufacturers to adopt several aftertreatment devices as effective way to 
comply with the stringent limits for gaseous and particle emissions. The diesel particulate filter (DPF) is 
currently the usual aftertreatment system in Diesel engines for soot particle abatement. Among different filter 
solutions, flow-through filters, such as ceramic foams or open honeycomb structures, are characterized by low 
pressure drop but by a filtration efficiency of only 40 - 70%, while wall-flow monoliths, consisting in alternately 
plugged parallel square channels, so that the exhaust gases flow through the porous inner walls, showed the 
best balance between filtration efficiency and pressure drop performance. Since pressure loss increases with 
soot filtration, the DPF needs to be periodically regenerated by burning off the accumulated soot. In our 
previous work we showed that the simultaneous use of a microwave applicator and a specifically catalysed 
DPF with a catalyst load up to 30%wt of CuFe2O4, allows to reduce the temperature, the energy and the time 
required for the filter regeneration with respect to the uncatalysed filter. These results were more evident in 
particular by adding K to our catalyst formulation and by lowering gas flow rate during the regeneration step. 
Starting by these very promising results, a procedure to increase the initial medium pore diameter of the bare 
monoliths was optimized, so aiming at increasing the active species load: in this way the further reduction of 
soot oxidation temperature is possible, keeping acceptable the pressure drop, and, more important, allowing a 
decreased regeneration frequency of the filter. The feasibility of the microwave heating technology was also 
verified by comparing the energy balance of the entire process to the actually employed regeneration 
technologies.  

1. Introduction 

Emission standards in US, Europe and Japan, progressively adopted also elsewhere, forced the 
manufacturers to use several post-treatment processes with the aim to comply the stringent limits for gaseous 
pollutants and particle emissions. Currently, some new combustion modes (Jiaqiang et al., 2016) were 
proposed and studied to remove the particulate from the emissions. However the diesel particulate filter (DPF) 
is currently the usual post-treatment system in Diesel engines for soot particle abatement in passenger, 
heavy-duty and non-road vehicles (Bermúdez et al., 2015). Among different filter solutions, wall-flow monoliths 
are the DPF type that showed the best balance between filtration efficiency and pressure drop performance. 
While flow-through filters, such as ceramic foams, open honeycomb structures, metallic wire-mesh or metal-
wools, are characterized by low pressure drop, due to reduced affinity with soot and, consequently, the 
filtration efficiency is low (40-70%) (Choi et al., 2007). The wall flow DPF consists in alternately plugged 
parallel square channels, so that the exhaust gases are forced to flow through the porous inner walls; in this 
way the particles collected on the surface and in the porosity of the channel walls, progressively block the 
pores (Palma et al., 2012). Since the pressure drop increases with soot accumulation, the DPF needs to be 
periodically regenerated by burning off the deposited soot. There are three kinds of regeneration techniques 
(Zhang et al., 2016): i) passive regeneration in which the catalyst is mixed in fuel or deposited on filter 
substrate to reduce the regeneration temperature, ii) active regeneration that is a method to raise the 
exhaust temperature by the supply of external energy from electricity, fuel and microwave (Palma and Meloni, 
2016), and iii) composite regeneration with combining the above two methods to accelerate the DPF 
regeneration process (Zhang et al., 2016). The innovative DPF regeneration technology involving the use of 
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microwaves to heat the filter up to the soot oxidation temperature (An et al., 2005) allowed to obtain two 
important results, (i) instantaneous penetration of microwaves into the filter and their selective absorption 
allow the combustion of soot whereas the DPF remains undisturbed, and (ii) the regeneration treatment can 
be performed independently of the engine operating conditions (Barba et al., 2012). In our previous works we 
showed that the use of microwaves to regenerate the DPF is a feasible technology, since in this case, the 
good dielectric properties of SiC, catalyst and soot, may result in the effective oxidation of diesel soot at lower 
temperature and higher reaction rate (Palma et al., 2013a) (Palma et al., 2016a). In particular we showed that 
the simultaneous use of a microwaves applicator and a specifically catalysed DPF with a catalyst load up to 
30%wt of CuFe2O4, allows to reduce the temperature, the energy and the time required for the filter 
regeneration (Palma et al., 2015a). Furthermore we evidenced the positive effect of NOx normally present in 
the exhaust gases on catalytic activity, so confirming the results observed in literature for similar systems 
(Palma et al., 2015b). One way to decrease the soot oxidation temperature is to increase the content of the 
active species on the DPF, in order to have a higher catalytic activity: but despite being characterized by high 
filtering surfaces, the silicon carbide monoliths currently available on the market in Wall Flow geometrical 
configuration are characterized by a median pore diameter of about 15-17 m, which decreases after the 
deposition of the catalyst, with the additional effect of increasing the pressure drops. In this regard, 
bibliographic studies and laboratory tests were performed to change the porosity and the median pore 
diameter in the bare samples. As shown in literature by Alok and Baliga (1995), it is possible to erode SiC 
samples producing on its surface some trenches with a depth of 0.3-0.8 m, by dipping in a 1:1 mixture of 
HF:HNO3 at a temperature of about 45°C. Due to the simplicity of this method, with the results in terms of 
erosion and no deterioration in the quality of the SiC crystals, the method proposed by Alok and Baliga was 
deemed suitable for laboratory experimentation (Palma and Meloni, 2016b). So the objectives of this work are 
to increase the active species load on the DPF by  increasing the average pore diameter of the bare SiC filter: 
in this way it is possible to further reduce the PM oxidation temperature and keep low the pressure drop, 
allowing so a lower filter regeneration frequency. Furthermore, the feasibility of the microwaves heating 
technology was verified by comparing the energy balance of the entire process to the actually employed 
regeneration technologies. 

2. Materials and methods 

2.1 Experimental tools 

In this work CuFe2O4 catalysed DPFs with different loads of active species were prepared; the catalysed 
DPFs were characterized by Scanning Electron Microscopy (SEM mod. LEO 420 V2.04, ASSING), Energy 
dispersive spectroscopy (EDX mod. INCA Energy 350, Oxford Instruments, Witney, UK), Hg porosimetry 
tests, N2 adsorption at  -196 °C, applying BET method for the calculation of sample’s surface area, and 
catalytic activity tests. In addition the adherence of the catalyst to the filter was evaluated measuring the 
weight loss caused by exposing the monoliths to ultrasound, according to an optimized experimental 
procedure (Palma et al., 2015a). The activity tests of soot deposition and on line microwave (MW) assisted 
regeneration of catalytic DPFs were performed by means of our diesel emission control laboratory plant 
(Palma et al., 2015a).  

2.2 Catalyst preparation  

Silicon Carbide (SiC) monoliths (Pirelli Ecotechnology, 150 cpsi), were selected as supports for the 
preparation of the structured catalysts. The monoliths were suitably shaped to achieve a rectangular form, in 
order to be inserted in our reactor. The Copper Ferrite (CuFe2O4) was prepared starting from iron nitrate and 
copper nitrate mixed, in distilled water, in a 2:1 molar ratio, continuously stirred at 60 °C. The catalytic 
monoliths were prepared according to the previously optimized preparation procedure (Palma et al., 2013b), 
by repeated impregnation phases in the prepared solution, drying at 60 °C and calcination at 1000 °C after 
each impregnation, in order to obtain a load of active species up to 30 %wt. The bare SiC monoliths were 
previously immersed in a 1:1 mixture of HF:HNO3 at a temperature of about 45°C for 30 min, following an 
optimized procedure to increase their median pore diameter (Palma and Meloni, 2016).  

3. Results and discussion 

3.1 Bare SiC monoliths 

The optimized acid treatment of the bare SiC monoliths had a very positive effect since, after 30 min of 
dipping, allowed to increase the initial median pore diameter from 17 to 24 m, and the specific surface area 
from 0.35 m2/g to 2.16 m2/g.  
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3.2 Catalytic samples 
The active species deposition on the modified porosity SiC monoliths allowed to obtain a uniform and 
homogeneous distribution of the active species on the monolith walls and inside the porosity. The BET specific 
surface area value of the catalytic samples is of 0.43 m2/g: by comparing this result with the one of the bare 
monolith (2.16 m2/g), a decrease in the specific surface area after the active species deposition is evident, 
probably due to catalyst occupation of the roughness caused by acid treatment. It is important to underline 
that this isn’t a negative result, since these catalytic systems, developed to limit the soot emissions, are 
specifically applied to a heterogeneous solid-solid-gas systems, in which the key parameter is the soot-
catalyst-oxygen contact and the feasibility of soot combustion depends to a great extent on the catalyst-soot 
contact conditions: so, it is necessary to maximize the interactions between the catalyst surface and soot 
particles, both of which are solid components. In our catalytic systems a very strong interaction between soot 
and catalyst is obtained, as reported in our previous works (Palma et al., 2015a), demonstrating the high 
catalytic activity towards soot oxidation with the oxygen present in the exhaust. The median pore diameter of 
the catalytic sample is reported in table 1, in comparison with other catalytic samples.   

Table 1: median pore diameter of catalytic samples with different loads of active species as function of the 

dipping time in the acid solution  

Dipping time [min] %wt of CuFe2O4 Median pore diameter [m] 
0 20 13.30 

30 20 17.25 
0 30 9.00 

30 30 15.00 

The above reported results evidenced the positive effect of the preliminary acid treatment on the bare SiC 
monoliths, since the increased median pore diameter of the ceramic matrix, allowed, as expected, the 
increase of the median pore diameter of the catalytic sample if compared with the analogue without acid 
treatment. From SEM images (figure 1) we observe the very homogeneous distribution of the active species 
on the filter surface, so confirming the results reported in our previous works (Palma et al., 2012). We can also 
observe the absence of cracks due to preliminary acid treatment. Furthermore, the SEM image and the 
elements distribution as obtained by EDX element mapping (not reported here), evidenced that  for the same 
filter the encountered elements are, apart from C, O and Si (the structural elements of the filter), also Cu and 
Fe, the catalyst active species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SEM images of 30%wt CuFe2O4 loaded monolith at various magnitudes: (a) 54 KX, (b) 1.70 KX, (c) 

5.00 KX, (d) 25.09 KX  

The results of the catalyst adherence tests are reported in figure 2, in terms of weight loss (%) vs number of 
cycles. The reported results, characterized by weight losses lower than that reported in literature for 
washcoated supports (Giani et al., 2006), demonstrated the good adhesion of the active species on the SiC 
granules even in absence of a washcoat. This is due to the preliminary thermal treatment of the bare supports 
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(calcination at 1000°C for 48 hours) that resulted in a growing coating of the SiC particles with SiO2 streaks, so 
greatly helping the adherence of the active species to the filter, even in the absence of a washcoat (Palma et 
al., 2013b). 

 

Figure 2: Ultrasonic tests performed on 30 %wt CuFe2O4 catalysed monolith 

3.3 Catalytic activity tests 
All the deposition tests were performed at the operating engine conditions of 920 rpm and Poil = 30 bar, with a 
fixed flow rate into the filter of about 110 l/min, with the exhaust gas temperature of 200°C, and with a soot 
concentration in the exhaust gas of about 45 mg/m3. The deposition and on-line MW assisted regeneration 
steps were performed following the previously optimized procedure (Palma et al., 2015a). The behavior of the 
pressure drop through the filter (DP) during the soot deposition phase as function of the deposition time for a 
20%wt and 30%wt catalytic filter with modified porosity is reported in figure 3, compared with a 20%wt 
catalytic filter without modified porosity. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Behavior of pressure drop as function of soot deposition time for different catalytic filters with and 

without modified porosity  

The better filter performances in terms of deposition duration due to porosity modifying procedure are clearly 
evident: with the same active species loading (green and blue bars) the time needed to reach the limit value of 
DP (about 550 mbar, corresponding to a soot load of about 5 g/l of filter) increases from about 450 to about 
750 min, so allowing a consequently decrease of the regeneration step frequency. Furthermore, the increase 
of the catalyst load up to 30% wt on a filter with modified porosity (orange bar) results in a deposition time still 
higher than the one relevant to the unmodified filter even  with a lower loading of catalyst (green bar). This 
very important result allows on one hand to obtain a higher duration of the deposition phase, and, on the other 
hand to better exploit the increased catalytic activity during the regeneration phase due to the higher catalyst 
loading. It is important to underline that during all the tests the opacity of the exhaust stream at the filter inlet 
and outlet has the mean values of 22% and 0.2% respectively, with an average filtration efficiency of about 
99% for all the filters. The behavior of the pressure drop through the filter (DP) and the temperature profile 
during the MW assisted regeneration phase of the two catalytic filters investigated is reported in figure 4: this 
phase was performed by setting the microwave applicator at 50% of its nominal power (about 950 W) and by 
reducing the exhaust flow rate to about 30 l/min. It is important to underline that before the MW application, 
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the exhaust gas temperature was constant at about 200 °C. As evident, the microwaves application resulted in 
the contemporary increase of the outlet gas temperature and of the slope of DP-time curve, due to microwave 
heating of the DPF. Figure 4 highlights that the modified porosity and the simultaneous higher catalyst content 
had a positive effect on the threshold temperature and on the regeneration phase duration, since the first 
decreased from about 380°C (blue bar) to about 350°C (orange bar), and the second decreased from about 
22 min (blue bar) to about 15 min (orange bar). Furthermore we can observe that at the end of the 
regeneration phase the DP/DP0 bars are constant, so indicating that the on-line MW application is able to 
completely regenerate the filter, differently from what reported by Pallavkar et al. (2009), whose researches 
evidenced an efficient off-line regeneration of DPF by microwave energy, but an insufficient on-line 
regeneration.     

 

Figure 4: DP and Tout as function of regeneration time for 20%wt CuFe2O4 catalytic filter with unmodified 

porosity (blue bar) and 30%wt CuFe2O4 catalytic filter with modified porosity (orange bar) 

As showed in figure 5, it is evident that the simultaneous use of microwave technology and a microwave 
susceptible catalyst is able to reach an energy saving during the regeneration phase of a DPF, with respect to 
the traditional fuel post-injection. In particular the comparison of the microwave energy supplied, considering 
the same filter volume (about 0.35 litres), highlighted that the addition of the catalyst allows an energy saving 
of about 60% (the blue bar versus the yellow one); if the modified porosity is also considered, a further energy 
saving is achieved, more evident with a higher catalyst load (green bar). 

 

Figure 5: Energy per unit regeneration cycle for the investigated catalytic filters compared with the traditional 

fuel post-injection  

4. Conclusions 

In this work the performances of copper ferrite catalysed SiC Wall Flow Filters were investigated in terms of 
diesel soot oxidation, at different catalyst loading. The SEM analysis performed on the prepared catalytic 
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samples evidenced the very homogeneous distribution of the active species on the filters surface, the good 
adherence and the tight contact between the active species and the SiC granules. The active species 
adherence tests evidenced that the catalytic filter preparation procedure allows a very good and strong active 
species deposition on the support without any washcoat. The Hg porosimetry tests showed that the 
preliminary acid treatment of the bare SiC monoliths had a very positive effect, resulting in an increased 
median pore diameter of the two catalytic samples, if compared with the analogues without acid treatment. 
The deposition and on-line microwave assisted regeneration tests showed better filter performances in terms 
of deposition duration due to porosity modifying procedure: with the same active species loading (20%wt), the 
time needed to reach the limit value of DP (about 550 mbar, corresponding to a soot load of about 5 g/l of 
filter) increases from about 450 to about 750 min, so allowing a consequently decrease of the frequency of 
regeneration step. Furthermore, the increase of copper ferrite loading up to 30%wt on a modified porosity filter 
resulted in a deposition time still higher than the one of the unmodified filter but with a lower loading of 
catalyst: this very important result allows on one hand to obtain a higher duration of the deposition phase, and 
on the other hand to exploit the better catalytic activity during the regeneration phase due to the higher 
catalyst loading. The regeneration tests showed that all the investigated filters were completely regenerated 
by on-line microwaves application. In particular the results showed that the simultaneous porosity modification 
and a higher catalyst loading (30%wt) allowed to decrease the threshold catalyst temperature to about 350°C, 
and the regeneration step duration from about 22 to about 15 min. The very positive effect of the modified 
porosity procedure on the catalytic performances is consequently reflected on the energy needed to 
regenerate the filter: the comparison of the microwave energy supplied, considering the same filter volume 
(about 0.35 liters), during the microwave assisted regeneration phase of all the filter typologies considered in 
this work, compared to the traditional fuel post-injection, showed that just the addition of the catalyst allows an 
energy saving of about 60%, that increased up to 75% with a higher catalyst load and modified porosity.  
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