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In inverse problems defined by models that include partial differential equations, a part of the boundary 
conditions are unknown and are to be estimated from experimental measurements. We have shown in a 
previous contribution that the solution of the inverse Richards’ problem can allow estimating percolation rates 
at the bottom of landfills through the use of measurements at the surface only. This can be a useful 
complement of the information furnished by the vadose measurement system, pointing to the possible 
presence of biases of in-situ equipment, and making it possible to use inexpensive mobile equipment to carry 
out surface measurements.  
In this article, we consider a generalisation which makes it possible to consider the presence of unknown non-
linear parameters, such as the effective hydraulic conductivity and the root uptake coefficients. This is 
accomplished using the method of separation of variables in the resulting estimation problem. Thanks to the 
linearity of the model, all these conditions can be expressed as linear functions of the unknown lower 
boundary condition. Otherwise, the relevant non-linear parameters are to be estimated from the data as well. 
Obviously, the correlation between the linear parameters contained in the unknown lower boundary conditions 
and the non-linear parameters can reduce the reliability of the monitoring procedure and hence the necessity 
of limiting the number of the latter. 

1. Introduction 
The correct evaluation of water and solutes flow in the unsaturated zone is of fundamental importance in 
traditional applications of groundwater hydrology, soil physics and agronomy, such as storm water 
management, soil irrigation and drainage, or soil-water redistribution. More recently, the need to predict the 
transport of contaminants (De Rademaeker et al., 2014) and toxic chemicals in the unsaturated and saturated 
zones with a high degree of accuracy has given rise to a renewed interest in this subject, since dissolved 
contaminants may migrate through the unsaturated zone, reach the saturated zone, and contaminate the 
groundwater. 
The combination of the fundamental theory developed by Buckingham (Buckingham, 1907) with Darcy’s law 
on the flow of a fluid through a porous medium provides the Richards’ equation (Richards, 1931), which, in its 
simplest formulation, is a time dependent one-dimensional partial differential equation.  
However, the presence of highly non-linear parameters (such as diffusivity and hydraulic conductivity) and of a 
random forcing term (the erratic time distribution of precipitation in the area), makes analytical solutions 
capable of describing saturated and unsaturated infiltration difficult and generally based on linear or quasi 
linear approximations. Numerical schemes are suitable for the solutions of direct problems, i.e. the 
determination of water concentration and flux (or equivalently of the total head) when both the forcing term 
and the boundary conditions, as well as the physical-chemical parameters, are perfectly known. However, 
they may become clumsy or outright infeasible if inverse problems are considered, i.e. if parts of the boundary 
conditions (and possibly physical-chemical parameters) are unknown and are to be estimated from 
experimental measurements. In other words, whenever the required information is not accessible to direct 
measurement, but has to be estimated using mathematical models that relate the sought after variables to the 
actually measured quantities.  
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This is for instance the case in landfills. Although there are many remediation technologies, and many others, 
some very promising, are constantly in development, the excavation and landfilling is still a widely used 
solution, although much less sustainable (Vocciante et al., 2016). In this context, the possibility to estimate the 
percolation rates in landfills at a fixed depth using reliable surface data (Solisio et al., 2012) can usefully 
complement the information provided by the vadose measurement system (Hix, 1998), possibly point to the 
presence of biases in it, and even help to contain the already high environmental impacts in the event of 
accidental leaks. 
Several methods have been proposed for the analytical solution of Richards’ equation (Ghotbi et al., 2011) – 
for a soil application, (Asgari et al., 2011) for a generalised case. In a previous contribution (Vocciante et al., 
2015b), we have employed the solution obtained by Yuan and Lu (2005) for the development of an inverse 
algorithm capable of identifying the boundary conditions at the lower end of the domain from measurements at 
the surface, based on the general procedure showed in (Vocciante et al., 2015a). Using a piecewise constant 
temporal function for the unknown boundary condition in Yuan and Lu’s model makes it possible to express 
the analytical solution of Richards’ one-dimensional equation as a linear function of a finite number of 
variables. These latter, corresponding to the unknown coefficients of the piecewise constant function, can be 
estimated using statistical regression algorithms to reconstruct the unknown boundary condition without need 
for regularization techniques (Vocciante et al., 2015b).  
In the present paper, we consider a generalisation that allows to consider the presence of unknown non-linear 
parameters, such as the effective hydraulic conductivity and the root uptake coefficients. This is accomplished 
using the method of separation of variables (Golub and Pereyra 1973) in the resulting estimation problem 
(Reverberi et al., 2013).  

2. Theoretical model 
The classical treatment of water flow in an unsaturated medium is provided by the Richards’ equation 
(Richards, 1931), a general partial differential equation proposed on the basis of the studies carried out by 
Buckingham (Buckingham, 1907) and describing water flow in unsaturated, non-swelling soils, with soil water 
content ߠ as the only dependent variable. ߲߲ݐߠ = − ݖ߲߲ ൤ܭ ൬߲߲߰ݖ + 1൰൨ (1) 

In this equation ܭ is the hydraulic conductivity (which is in general a function of water content ߠ), and the total 
head ℎ is given by the sum of the heights of the capillaries ߰ and geometric ݖ altitude. Thus, the overall model 
of water percolation within the porous medium consists in the superposition of pore-scale transport and 
gravity-maintained flow. Adopting the concept of differential water capacity, defined as the derivative of the soil 
water retention curve ܥ(߰) =  or ߰ from the mixed ߠ makes it possible to eliminate either ߲߰/ߠ߲
formulation (1), without the necessity of employing constitutive relations for describing the interdependence of 
the two variables. If ߰ is chosen as the independent variable, the so-called ߰-formulation of Richards’ 
equation is obtained ܥ(߰) ݐ߲߲߰ = ݖ߲߲ ൤ܭ(߰) ൬߲߲߰ݖ + 1൰൨ (2) 

Eq(2) defines the infiltration problem provided a suitable initial condition (3) and two boundary conditions (4)-
,ݖ)߰ :(5) 0) = ߰଴(ݖ) (3) ߰(0, (ݐ = ߰௕ (4) 

൤ܭ(߰) ൬߲߲߰ݖ + 1൰൨௭ୀ௅ =  (5) (ݐ)௧ݍ−

where the forcing term ݍ௧ is the external time-dependent surface flow (precipitation rate). In direct problems 
the value of ݖ = 0 coincides with the location of the water table, and consequently the saturation condition 
implies ߰௕ = 0. Unfortunately this is not the case in inverse problems, in which the origin of the ݖ coordinate 
typically coincides with a specific location (for instance the depth of a landfill) where the saturation condition is 
not satisfied and the corresponding value of ߰௕ has to be estimated from the measurements available. 
Using the Kirchhoff transformation (Gardner, 1958) allows solving the problem (2)-(5) using the method of 
characteristics in the Laplace domain. The inverse Laplace transformation provides the sought-after matrix 
flux potential Φ for the transient flow (Yuan and Lu, 2005):  
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Φ(ݖ, (ݐ = Φ଴(ݖ) + ܦ8 exp	 ቈܮ)ߙ − 2(ݖ ቉෍ ௡ଶߣ) + ଶ4ߙ ߙ2(ݖ௡ߣ)݊݅ݏ(ܮ௡ߣ)݊݅ݏ( + ܮଶߙ + ௡ଶஶߣܮ4
௡ୀଵ  (6) (ݐ)ܩ

Φ଴(ݖ) = ௦ܭ ௕߰)ߙ]	݌ݔ݁ − ߙ[(ݖ + ߙ଴ݍ [exp	( − (ݖߙ − 1] (7) 

(ݐ)ܩ = න ଴ݍ] − ௧(߬)]௧ݍ
଴ exp	 ቈ−ܦ ቆߣ௡ଶ + ଶ4ߙ ቇ ݐ) − ߬)቉ ݀߬ (8) 

where ܦ = ௦ߠ)ߙ௦/ሼܭ − )	௡ is the ݊th positive root of the equation sinߣ ,௥)ሽ is the diffusivityߠ (ܮߣ + (ߙ/ߣ2) cos	( (ܮߣ =  is the initial condition (ݖ)is the time dependent flux at the upper boundary and Φ଴ (ݐ)௧ݍ ,0
assumed to be the steady-state solution of the system. The actual flux can be approximated to any degree of 
accuracy by a suitable combination of functions (e.g. constant, linear, quadratic, exponential, sinusoidal) that 
make it possible to integrate Eq(8) in closed form. 
After Φ has been evaluated, both pressure head and water content can be computed as ߰ = (1 ⁄ߙ Φߙ)	݈݊	( ⁄(௦ܭ  
and ߠ = ௥ߠ + ௦ߠ)ߙ − ௥)Φߠ ⁄௦ܭ  respectively. 

3. Algorithm for the boundary condition estimation 
Rewriting Eq(7) as Φ଴(ݖ)(ݖ)ߦ = ଵܥ +  (9) (ݖ)ଵܣ

makes it possible to express Eq(6) as Φ(ݖ, (ݖ)ߦ(ݐ = ଵܥ + (ݖ)ଵܣ + ,ݖ)݂(ݖ)ߦ  (10) (ݐ

where ܥଵ depends on ߰|௭ୀ଴ and ݂(ݖ,  but not on ߰|௭ୀ଴, that ,ܮ ,ܦ ,ߙ ,(ݐ)௧ݍ depends on the other parameters (ݐ
is:  (ݖ)ߦ = ߙ )	݌ݔ݁ ௦ܭ(ݖߙ  (11) 

ଵܥ = exp	(  ௕) (12)߰ߙ

(ݖ)ଵܣ = ௦ܭ଴ݍ [1 − exp	(  (13) [(ݖߙ

,ݖ)݂ (ݐ = ܦ8 exp	 ቈܮ)ߙ − 2(ݖ ቉෍ ௡ଶߣ) + ଶ4ߙ ߙ2(ݖ௡ߣ)݊݅ݏ(ܮ௡ߣ)݊݅ݏ( + ܮଶߙ + ௡ଶஶߣܮ4
௡ୀଵ  (14) (ݐ)ܩ

Since in inverse problems the lower boundary condition ߰௕ is not known, it is convenient to approximate it 
using a simplified functional form dependent on a number of adjustable parameters, as already done in similar 
cases involving partial differential equations related to mass and heat conservation laws (Reverberi et al., 
2013). Typically, the simpler the functional form, the higher the number of the parameters.  
In this case a piecewise constant function of time is assumed for ߰௕, that is, the overall time range considered 
is divided into a number of time intervals in each of which ߰௕ is constant. Obviously, any profile can be 
approximated to any desired degree of accuracy by increasing the number of intervals. The estimation 
problem consists in the identification of the constant values ܥ௝	in each time interval ݆.  
Using a piecewise constant function implies the use of a first-type boundary condition in each interval. 
However, the estimation procedure would lead to equivalent results (within the limits of the approximations 
introduced) if different approximations are used (for instance, a piecewise constant value of the gradient). In 
this case, the availability of an analytic solution for the Dirichlet problem greatly simplifies the estimation task 
and is the main reason for using it. 
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At the end of the procedure showed in (Vocciante et al., 2015b) the general expression for the solution in the ݊-th interval ݐ௡ିଵ ≤ ݐ ≤ ,ݖ)௡ is obtained. Γ௡ݐ (ݐ = Φ௡(ݖ, (ݖ)ߦ(ݐ = ௡ܥ + (ݖ)ଵܣ + (ݖ)ߦ ݃௡ିଵ(ݖ, (ݐ + ଵܥ) −  (15) (ݖ)ℎ௡(ݖ)ߦ(௡ܥ

ℎ௡(ݖ) = ൤ܣଵ(ݖ)(ݖ)ߦ + ݃௡ିଶ(ݖ, ௡ିଵ)൨ݐ ׬ ௅଴(ݖ)ߦ1 ׬ݖ݀  ൤ܣଵ(ݖ)(ݖ)ߦ + ݃௡ିଶ(ݖ, ௡ିଵ)൨௅଴ݐ ݖ݀   ݊ ≥ 2 (16) 

݃௡ିଵ(ݖ, (ݐ = ෍݂௡ିଵ
௝ୀଵ ,ݖ) ௝ݐ − (௝ିଵݐ + ,ݖ)݂ ݐ − (௡ିଵݐ ݆ ≥ 1 (17) 

where (ݖ)ߦ = ௦ܭ/ߙ )	݌ݔ݁  ௡ܥ ,(ݖߙ = )	݌ݔ݁ ଵܣ  ௡) and߰ߙ = ௦ (1ܭ/଴ݍ − )	݌ݔ݁   .((ݖߙ
 
At this point, given the vector of experimental data Φᇱ measured at the surface, the vector ܿ of the boundary 
conditions ܥ௡ could be estimated using the usual least squares method, which in our case provides the 
minimisation problem ‖ܿܣ − ܾ‖ଶ = ݉݅݊ where ܾ = Φᇱ − (஺ଵ(௅)క(௅) + ݃) and ܣ is a sparse matrix of dimension [݊ × ݇], with ݊ the number of intervals and ݇ the total number of measurement. As showed in (Vocciante et al., 
2015b), in this case no regularization techniques are needed in the reconstruction procedure, since the 
approximations introduced have also regularized the solution: the particular structure of the matrix A, which is 
such that the data in the j-th time interval affect only the values of ܥଵ and ܥ௝, determines the well-posed nature 
of the reconstruction observed. 

4. Estimation in case of unknown parameters 
In case one or more non-linear unknown parameters are contained in the mathematical model of the 
phenomenon, it is still possible to use the approach shown above. The parameter estimation procedure can in 
fact be modified to accommodate the estimate of these additional parameters. In this case, the least squares 
method provides the following minimization problem for the estimation of the parameters ሼܪ|ܿሽ ‖Φᇱ − 	Ω(ܪ) − ଶ‖ܿ(ܪ)ܣ = ݉݅݊ (18) 

A general optimisation algorithm with respect to the set ሼܪ|ܿሽ would considerably reduce the efficiency of the 
regression algorithm, due to the difficulty of determining suitable starting values and to the possibility of 
multiple local minima. 
However, these difficulties can be overcome if the principle of relative optimality is applied, which in our case 
provides optimal values of the vector ܿ for every value of the non-linear parameter ܪ ܿ = ൫(ܪ)ܣ(ܪ)்ܣ൯ିଵ(ܪ)்ܣ[Φᇱ − Ω(ܪ)] (19) 

or ܿ = Φᇱ](ܪ)ାܣ − Ω(ܪ)] (where ܣା(ܪ) is the pseudoinverse of ܣ) if the matrix (ܪ)ܣ is not full rank.  
Thus, the computation of the non-linear parameter can be carried out by minimising the objective function ‖ሼΦᇱ − 	Ω(ܪ)ሽ − ሼΦᇱ(ܪ)ାܣ(ܪ)ܣ − 	Ω(ܪ)ሽ‖ଶ =  

ฮ ஺ܲ⏊ሼΦᇱ − 	Ω(ܪ)ሽฮଶ = ฮ ஺ܲ⏊(ܪ)(ܪ)ߜฮଶ = ݉݅݊ (20) 

where ஺ܲ⏊ = ሼΦᇱ − 	Ω(ܪ)ሽ −  .with respect to one parameter only (ܪ)ܣ is the projector on the orthogonal complement of the column space of (ܪ)ାܣ(ܪ)ܣ
The typical Gauss-Newton step in the iterative procedure for the estimation of the non-linear parameter is 
given by (Golub and Pereyra, 1973) ܪ௡ାଵ = ௡ܪ − ߬௡ ቂܦ ቀ ஺ܲ⏊(ܪ௡)ߜ(ܪ௡)ቁቃା ஺ܲ⏊(ܪ௡)ߜ(ܪ௡) (21) 

where the operator ܦ is the Fréchet derivative of matrices and ߬௡ is an interpolation-extrapolation factor used 

to locate the minimum of the objective function in the direction ቂܦ ቀ ஺ܲ⏊(ܪ௡)ߜ(ܪ௡)ቁቃା ஺ܲ⏊(ܪ௡)ߜ(ܪ௡). 
Furthermore, indicating the variance of the data with ߪଶ, ߪଶ ቂܦ ቀ ஺ܲ⏊(ܪ௡)ߜ(ܪ௡)ቁቃା provides an estimate of the 
variance of the parameter ܪ, once convergence at ܪ∗ has been attained. 
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For the regression procedure to be completely described, even if this is not the case due to the well-posed 
nature of the reconstruction achieved through the above-explained procedure, a further aspect should be 
taken into account. 
Whenever the matrix (ܪ)ܣ is rank deficient, which is generally the case due to the ill-posed nature of inversion 
problems like (15)-(17), the evaluation of the pseudoinverse matrix ܣା(ܪ), generally tackled using the 
approach suggested by Tikhonov and Arsenine (1976), can lead to unsatisfactory results when a non-linear 
parameter is considered in the estimation procedure. This can be true even if the Morozov’s discrepancy 
principle (Morozov, 1984) is used to determine the Tikhonov parameter ߱ in the identification of a suitable 
regularization matrix ߖ. 
Indeed, an unsuitable value of ߱ could be compensated by a biased estimate of the non-linear parameter ܪ 
since there might be a large number of combinations of ሼ߱|ܪሽ that predict the same statistical properties of the 
data. Rather, additional constraints dependent on the particular conditions of the experimentation should be 
added to the optimisation problem, like the use of a combination of tridiagonal and pentadiagonal matrix for ߖ 
according to the strategy originally recommended by Twomey, (1963). 

5. Conclusions 
The temporal profiles of pressure and water content at a certain depth can be determined using 
measurements made at the surface provided an inverse solution of Richards’ equation is employed.  
We have shown how to obtain a suitable approximation of such solutions, based on the assumption of 
piecewise constant profiles. The performances of the resulting algorithm have been shown in (Vocciante et al., 
2015b). Here we have shown a generalization of this approach, which allows accommodating of unknown 
non-linear parameters in the estimation procedure making use of the method of separation of variables due to 
Golub and Pereyra (1973). Finally, we highlighted the further complications that normally result from this kind 
of extension, since the presence of a biased estimate of the non-linear parameter can considerably complicate 
the eventual regularization process.  
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