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This work presents a knowledge-enabled supervisory monitoring (KSM) framework which is used for the 

enhanced operational analysis of processes that are controlled by industrial automation systems. The 

objective of the knowledge-enabled platform is to provide notifications to the operators about potential 

abnormal behaviour of the underlying control equipment or subsystem. A set of rules designate the predefined 

conditions that are considered nominal which are described by a Finite State Machine. The systems is 

represented by an ontology integrated into a Common Information Data Exchange Model (CIDEM) using 

existing standards (ISA-95, implemented by a B2MML (Business To Manufacturing Markup Language) XML 

schema) for the information modelling while the decisions are provided in an informative manner to the 

operator. The functionalities of the KSM and its potential are exemplified to a continuous process at CERTH 

which is monitored by a Supervisory Control and Data Acquisition System (SCADA). 

1. Introduction 

The increase of process complexity in conjunction with the increase of the data produced by the process 

operations make the use of enhanced methods for information extraction more imperative than ever before. 

Therefore, the timely processing and the accurate notification about the status of the involved sensors, 

devices, equipment, or systems is necessary to maintain product quality, prevent undesired effects and avoid 

incidents related to the measured variables of the process (Natarajan, 2012). A precise and early notification 

mechanism of potential abnormalities is essential to be developed beyond the typical alarm notification 

systems that are already in place for the safety of the process and the involved operators. On the other hand 

the increasing level of automation can provide useful information and valuable knowledge since large amounts 

of online data are available to be evaluated upon demand (Harjunkoski, 2015).  

The operation of process systems takes place at a highly dynamic environment. The integration of data and 

information derived from complex and highly dynamic processes is of major importance to improve both timely 

decision making and the improvement of process operation and quality of final products. In order to gain the 

most out of the existing data and the structured information, the integration between Operation Technology 

(OT) and Information Technology (IT) is necessary. The interoperability between OT and IT systems is a 

critical concern during the design and development of an knowledge-enabled platform. Currently data are 

analysed using conventional tools (Muñoz, 2012) whereas the decision-making is partially performed at a later 

stage using respective tools by the plant operators and the process managers. Therefore, the motivation of 

this work is mainly the development of a knowledge-based supervisory monitoring (KSM) framework that will 

enable the online notification of the status and condition of the involved system using process data combined 

with an ontology-enabled process representation. 
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1.1 Importance of Fault Identification at Process Systems 
During the operation of a process the monitoring and the appropriate visualization of the alarms, notifications 

or performance data and their evaluation is becoming a challenging issue for the operators. Furthermore, in 

case of multiple simultaneous alarms highly skilled operators are necessary to identify the priority and the 

reasons that caused them. A subset from the alarms that appear during the operation are related to faults, e.g. 

degraded performance of a filter that leads to high resistivity of water, whereas others are related to the 

dynamics of the process, e.g. highly exothermic reactions can lead to increase of furnace temperature. In this 

work the focus is towards the alarms that might hinder an abnormal behaviour related to a device or 

equipment of the process. A fault can be defined as an undesired deviation of at least one property or 

parameter of the system from the normal condition, e.g., a pump malfunction of a feed system. Also the 

unexpected variations that affect the performance of a system is considered as a fault (Zhang, 2008) that 

denotes a malfunction. In case the fault affects the ability of the system or process to operate (interruption of 

the process functions) under desired operating conditions and defined set-points then it is considered a failure. 

In general the alarms built into the automation systems use single variable monitoring methods that do not 

provide information about the underlying conditions or factors that caused the alarms to the operators besides 

the variable (tag) the excided the predefined limits. Overall faults can lead to system failures it is important to 

identify potential abnormal situations even with a slight uncertainty margin and notify the operator to act 

accordingly. Thus, there is a need for effective mechanisms and tools for active fault detection that could 

coexist with the existing industrial automation systems infrastructure and to convey notification information to 

the operator in a seamless manner through the Human Machine Interface (HMI) of the process.  

2. Knowledge-based representation 

In the dynamic environment of a process most of the states (measurements such as temperatures, pressures, 

flows etc.) of the physical systems evolve continuously. Therefore, the identification of the normal or abnormal 

status needs to be implemented in the time frame determined by the process operation. In this work, the 

identification procedure is enhanced by a knowledge-enabled system that relies on an ontological approach 

realized by a Common Information Data Exchange model (CIDEM). A knowledge-based representation of a 

process system can support the explicit description of the knowledge in a specific domain and exploits it 

through appropriate reasoning mechanisms in order to provide high-level problem solving performance 

(Farannini et al., 2011) or in our case the potential fault identification.  

The knowledge which is integrated at the CIDEM is used by the reasoning mechanisms to result to an 

abnormal notification system for potential faults and suggestions for alarm prioritization. The ability of 

ontologies to represent correlations under boundaries and constraints between different subsystems is 

exploited to document the process equipment dependencies. These correlations and dependencies are 

afterwards invoked by a set of rules that is able to check if the status is within the nominal state. Otherwise 

any deviation from the nominal case is a potential fault which is accordingly reported to the process operator. 

The objective is to visualize the data in a simplified non-disruptive manner to the traditional HMIs of the 

automation system. 

2.1 Common Information Data Exchange Model (CIDEM) 
A CIDEM defines the high level domain model comprising the basic elements (events, relations, interfaces 

etc.) of the underlying process system. The CIDEM specification consists of architecture and concepts of CIM, 

and the language (by which the CIDEM schema is defined). The scope is to provide information and semantic 

model for the domain objects of the process system. The description of these objects is related to static data 

and dynamic data. The static data (e.g. data about equipment characteristics etc.) will be used for the 

interpretation of the dynamic data (e.g. the measurements from the sensors). The CIDEM process the 

requests from the framework components and store data in a hybrid repository. The plant ontology is the 

knowledge representation of the plant structure, the hierarchical equipment structure and the equipment 

interconnections (Venkatasubramanian, 2006). Based on that the CIDEM has been developed, aiming to 

provide a model of information elements (e.g. concepts, events, relations, and interfaces) used for information 

exchange. The main elements of the CIDEM ontology are shown in Figure 1. 
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Figure 1: Developed Ontology for the Representation of Process Systems  

The CIDEM definition is considered as a shared vocabulary which is used to address the information needs of 

the plant-floor components. More specifically CIDEM defines how managed elements are represented as a 

common set of objects along with the relationships between them (DSP0201,2009). Standards such as 

B2MML (Business To Manufacturing Markup Language), which is an ISA-95 XML implementation has been 

utilized (ANSI/ISA-95.00.03-2005). The CIDEM specification consists of architecture and concepts, language 

(by which the CIDEM schema is defined), and a method for mapping CIDEM to other information models. The 

CIDEM used in this approach has been defined using well-known industrial standards, so as to be reusable 

and compatible with external systems. The architecture is object-oriented, while its elements are represented 

as classes, whereas the relationships are represented as associations. 

The CIDEM models both static (SFinformationModel) and dynamic data (SFevents) of the plant-floor. Based 

on this ontology, CIDEM is able to receive and store, the dynamic information of the plant-floor which is the 

events, divided into two main categories, the measurements and the alerts. Each event is characterized by an 

unique identification number, its type (measurements or alert), the timestamp that it is occurred, the space 

(location), the source that produce it and other information describing in more details the event according to 

ISA-95. An indicative example of the XSD schema describing the alerts in the CIDEM is shown in Figure 2. 

 

 

 

Figure 2: Measurement schema and properties 

On the other hand, the static information of the plant-floor, is comprised of the plant-floor geometry, the 

equipment (ID, description, type, etc.), the sensors (ID, description, type, location, etc.) that are used for 

monitoring the devices/equipment, as well as the assets, the actors and the procedures that describes the 
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operations in the plant-floor environment. Furthermore, the CIDEM is specified by the inputs/outputs interfaces 

between the interconnected components and the data repository.  

2.2 Detection and Notification of Abnormalities using Behaviour Rules 

As the CIDEM defines the high level domain model comprising of the basic elements (events, assets, 

relations, interfaces etc.) there is a second level of analysis that uses the stored data. In order to provide 

notification of potential abnormal conditions, the developed methodology needs to be deployed online and 

respond in close to real-time by accessing information from the CIDEM. For this reason the static data support 

the evaluation of the dynamic data (events, alerts etc.) at each sampling interval which is determined 

according to the dynamics of the involved equipment. A Finite State Machine (FSM) formulation is used to 

describe the procedure during which information or tasks move from one state to another, according to a set 

of rules (Ziogou, 2013). A FSM M is defined by a tuple 
0( , , , , , )Q q     in which Q is a finite set of states, 

oq Q  is the initial state, is the state transfer function, λ is the output function, Χ is the finite input alphabet; 

and Y the finite output alphabet. The FSM represents all feasible states of the components and the logical 

rules that trigger the transitions between the states. FSMs can be fully semi-automatic or completely 

automatic, depending on the involvement of the process operator or not. The scope of the invoked rules is to 

extract adequate information to notify the operator about the of the performance of the involved subsystem of 

the plant. The transition rules are represented via a propositional-based logic approach using a combination of 

logical operations ( : ,̂ : , :!AND OR NOT ) and a set of Boolean variables (β), which are related to the status of 

each equipment of the process. Thus, the complete set of rules is derived by the operation of the unit’s 

subsystems and their constraints. Each rule is associated with a transition at the FSM. Overall the FSM 

describes the evolution in time of a set of discrete and continuous state variables.  

In the case of identification of abnormal conditions the transition rule provides simple reasoning of process 

data. The FSM is used to model the generic behaviour of the equipment and not only the identification of the 

abnormal conditions. In case a rule invokes a transition to the state that designates the degradations or fault of 

the equipment then the output triggers the notification mechanism. Otherwise the FSM can produce 

informational output to be used in conjunction with the monitoring information from the I/O field.  

3. Knowledge-enabled Supervisory Monitoring (KSM) Framework for Process Monitoring  

The objective of a Knowledge-enabled Supervisory Monitoring (KSM) framework is to provide usefull 

information and notification to the operators besides the typical measurements available at the existing HMIs. 

The traditional process plants rely on automation architectures (such as Supervisory Control and Data 

Acquisition – SCADA) that monitor and control the subsystems by real-time measurements from the I/O field. 

The analysis of the operation and the performance evaluation are conducted at a secondary stage using data 

that are stored at Process Information Management Systems (PIMS). On the other hand, the integrated KSM 

framework is based on the requirements and specifications of a continuous process plant. Initially the structure 

of the process plant and of the automation system is derived using engineering schematics and process 

equipment details that are subsequently stored according to the CIDEM structure to the data repository. 

Furthermore, a connection between the equipment and the related operations (work schedules) is created. In 

that context the KSM framework consists of the Rules of operation, the CIDEM and the ontology. Also 

appropriate middleware for the data exchange is developed and deployed that is based on industrial-grade 

standards. Figure 3 shows the architecture of the KSM framework and the connection to the process unit. 

 

 

Figure 3: Components of the KSM platform and information flow  

Actuators

I/O Field 

Sensors

Operator

SCADA Functions (OPC enabled) 

Automation System

ControlProcedures &
Algorithms

Inputs ActionsHuman Machine Interface 
(HMI) CIDEMM

id
d

le
w

ar
e

Data Repository

Ontology

Rules

Knowledge-based Platform

Restful 

Services 

/ MQTT

Process Information 
Management System 

PIMS

Archived 

Data

OPC

Process Pilot Plant

Physical Entities Virtual Entities (data, information, knowledge)

OPC

OPC

1018



The KSM framework analyses the functions performed by the automation system of the process and also 

defines other functions typically associated with the process operations. The main supported areas are the 

data collection, the performance analysis, the events/alarms tracking and the procedures definition. Overall 

the scope of the framework is to demonstrate that the instantiated platform can provide interfaces allowing the 

connection of all of the automation system to the smart knowledge-aware functions (such as the supervisory 

control, physical process equipment, and operation rules/conditions) and to define the formalism that supports 

heterogeneous information to be integrated and evaluated based on predefined methods. 

4. CERTH/CPERI’s Use Case – Continuous Process Plant  

The demonstration of the developed platform is instantiated for the auxiliaries of a pilot plant which is designed 

and operated at the premises of CERTH/CPERI. The pilot plant is fully automated and intuitive HMIs are 

available to the operators. The automation system relies on a supervisory control and data acquisition 

(SCADA) architecture. The subsystem is responsible for the water purification of a fuel production system of a 

continuous process. Figure 5 shows an indicative interface which is used for the monitoring of the status of the 

equipment of the water purification subsystem. All system components (pumps, valves, etc) are controlled by 

on/off commands, control algorithms (e.g. PID controllers) or by pre-programmed procedures. The monitoring 

system provides real-time information regarding the state of the plant, as well as, trending features related to 

the evolution of the experiments. Figure 4 shows an indicative interface which is used for the monitoring. 

The knowledge-enabled platform provides information related to early warnings of undesired behaviour or 

response of the equipment into consideration. An indicative case is the evolution of the conductivity profile by 

observing the measurements of conductivity and resistivity along with the time that the circulation pump 

operates. In case of a significant time deviation without respective alteration in the conductivity then a potential 

malfunction of the pump is present or the electrical components related to the electric circuit.  

 

   

Figure 4:  HMI of the Subsystem  

 

q1: Standby mode,  

q2: Operation mode 
q3: Maintenance 

q4: Performance degradation/ Fault 

 

  

Figure 5: FSM for the Water Purification Subsystem 

As stated earlier the CIDEM represents both static (e.g. data related to the nominal water conductivity ranges) 

and dynamic data (e.g. the status of the pump) of the pilot plant combined with information from the Process 

and Instrumentation Diagram (P&ID) of the plant. The KSM platform provides notification based on a set of 

predefined rules which are modeled by the FSM structure. Figure 5 shows an indicative example for the 

behavior analysis of the components related to the water purification subsystem, which are a two way valve, a 

three way valve, a pump and a conductivity meter. The states (q1,..q4) describe the possible conditions of a 

water purification subsystem (standby, operation, maintenance, and fault). The notification to the user is 

performed only when state q4 is reached. The transition between the states is performed according to a set of 

rules that define the input alphabet (X) of the FSM.  

2,4 , 21 21 21, max: ((! ) )WT CT P P tx        (1) 

Eq(1) represents the rule for the transition to the notification state (x2,4). More specifically βWT is the status of 

the water resistivity, βΔ,CT21 is the change of water resistivity, βP21 is the pump status and βP21,tmax is related to 

the maximum period of time that the pump operates. For example Table 1 presents the variable (βWT) that 

monitors the water quality based on the measured resistivity of the water and the rule that activates the 

notification that the pump might have a malfunction (q4). At these states the historical data of the behavior of 

the sensor and the actuator are evaluated at regular intervals against the real-time data. The evaluation can 

activate the respective transition when the value of the operation time of the pump output is beyond the 

expected average or if there is a significant change with an increasing slope of the output. In order for the 

state to change, the user response (acknowledgement of notification) is necessary for states q3 and q4.  

q1

q2

q3

q4

x1,2

x2,1

x3,1

x1,3

x4,3

x2,4

x3,4

x2,3 x3,2

1019



Table 1: Water Purification Subsystem - Status of the Resistivity Variable 

Variable status  Description 

Re Re ,[ 1] [ ]WT s s highWT WT      Variable WT  is true (= 1) if and only if (iff) the water resistivity is 

greater/equal to Re ,s highWT  (2.2ΜΩ)  

Re Re ,[ 0] [ ]WT s s lowWT WT      Variable WT  is false (= 0) iff the water resistivity is below Re ,s lowWT  (2.0ΜΩ) 

5. Conclusions 

The main results of this work is the development of a knowledge-enabled supervisory monitoring framework 

that can identify potential abnormal conditions and notify the process operators in an non-disruptive way 

combining online data from the I/O field and predefined rules of operation. The use of an ontology combined 

with a set of rules results to an integrated solution which will be evaluated at long term by the operators. The 

next step will be to include more details to the representation of the ontology and utilize information from other 

systems already available at the shop floor related to the Computerized Maintenance Management Systems 

(CMMS) and the integrated Decision Support System (iDSS) where the activities related to the maintenance 

will be analysed to enable a comprehensive fault diagnosis and explore the potential of an early failure 

detection mechanisms for process systems. 
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