
CHEMICAL ENGINEERINGTRANSACTIONS 
 

VOL. 52, 2016 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.aidic.it/cet 

Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam 
Copyright © 2016, AIDIC Servizi S.r.l., 

ISBN978-88-95608-42-6; ISSN 2283-9216 

 

Universal Multi-Functional Secondary Catalyst Carriers for 

Purification of Gas Emission of Thermal Power Equipments 

Evgeny V. Krasnokutskiya, Bekzat B. Makhanovb, Valery E. Ved’a, 

Marat I. Satayevb, Anna V. Ponomarenkoa, Abdilla A. Saipovb 

aNational Technical University “Kharkiv Polytechnic Institute”, 21 Frunze St., 61002 Kharkiv, Ukraine 
bM. Auezov South Kazakhstan State University, Department of life safety and environmental protection, Tauke Khan avenue 

 5, 160012 Kazakhstan, Shymkent, 160012, Kazakhstan 

 valeriy.e.ved@gmail.com 

A method of deposition on the surface of metals or ceramics catalytically active compounds by attaching them 

to the intermediate glass crystalline coatings. The effect of the presence of 3d-transition elements in the 

intermediate coating to modify the activity of a palladium containing catalyst was studied. The basic indicators 

of the efficiency of non-isothermal heterogeneous catalytic conversion process of benzene depending on the 

types of transition metals which are part of the intermediate coating were studied. Comprehensive analysis of 

the morphology of a glass-intermediate secondary catalyst carriers and surface coating them with layers of 

catalytically active compounds was carried out, which allowed to estimate the effect of the characteristic features 

of the structure of the coating surface on the rate constant of the process of conversion and mass transfer 

coefficient. 

1. Introduction 

Catalysts neutralization of gas emissions are widely used in industry, in particular it is used in waste treatment 

complexes and for neutralization of exhaust gases of internal combustion engines. Operating conditions of 

catalysts are characterized by dynamic thermal and mechanical loads, nonuniformity of speed of catalytic 

reactions in different parts of the support surface due to inhomogeneity of hydrodynamic and thermal conditions 

in the axial and radial sections of block-converter. In such circumstances, long-term operation results in the 

destruction of the catalyst surface, the catalyst layer peeling from the carrier material, which is caused by 

differences in the values of the linear expansion coefficients of the system “catalyst carrier - catalytic layer”. 

Significant influence on the activity of the catalyst in chemical processes of neutralization of gas emissions also 

provides qualitative and quantitative composition and the morphology of the catalyst support, experimental and 

theoretical study of the effect of which is the main objective of catalytic research. 

2. Formulation of the problem 

The study aims to determine the effectiveness of operating characteristics catalysts in the processes of 

neutralization of gas emissions and identify the controlling factors by which is possible to increase the operating 

parameters on the basis of a comprehensive study of the surface structure of the carrier’s catalytic coating, their 

morphology and morphology of the developed catalysts. 

The catalytic properties of materials are determined by factors such as chemical composition, crystal structure, 

macro- and microscopic structure. Efficiency of catalytic coatings also depends on the type, composition and 

characteristics of morphology of the catalyst support. 

As the catalyst carrier in a vehicle and industry catalyst supports of different materials and different constructions 
are used. In order to increase the specific surface of metallic and ceramic carriers and increase the catalytic 
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properties of the finished catalyst, forming of the intermediate coating is widely used. On the surface of 
intermediate coating one or more metals or oxides of the platinum group (platinum, palladium, rhodium) as an 
active component is deposited. 
Deposition of platinum group metals or oxides is mainly takes place from aqueous solutions of inorganic salts, 
followed by drying, calcination and partial or full chemical reduction of catalyst. 
Formation of catalyst layer on a metal or ceramic surface by known means is associated with various drawbacks. 
In particular, for the reason that only a certain combination of catalyst material and carrier material to produce 
sufficient adhesion of the catalyst to the surface of the carrier material (metal or ceramic) under high temperature 
and thermally unstable operation of the catalyst can be used. The condition of certain ratio between the 
temperature coefficients of linear expansion in the system “catalyst carrier – catalytic” layer must be fulfilled, 
since cyclic temperature changes lead to thermal stresses which are proportional to the differences in the 
coefficient of linear expansion values of the catalyst and carrier which leads to the destruction of the coating. 
The destruction of the catalytic coating can also be caused by mechanical impact, abrasion and other factors. 
To solve this problem, a method of managed formation of catalytically active centres of a complex micro relief 
on the surface of high-temperature alloys and ceramic materials (primary carrier) was developed. It is based on 
the idea of the chemical compositions and the new technology of forming the special amorphous or glass 
crystalline adhesives of thickness less than 1 micron (the secondary carrier) which are applied to surface of 
metals or ceramics (primary carrier) layers. Research has shown that the secondary coatings of any composition 
and of any value of the thermal coefficient of linear expansion do not have a mechanical effects on the primary 
carrier, the thickness of which only one order of magnitude greater than its covering layer, when the temperature 
is up to 1,000 °C. 
Secondary carrier by means of structural viscosity relaxes thermal stress arising in it from the mechanical action 
of the primary metal carrier with increasing temperature due to the difference in coefficient of linear expansion. 
The catalytically active coating layers are deposited on the surface of the secondary glass-containing carrier 
with thickness considerably smaller than 1 micron and also do not cause thermal stresses in our proposed 
compositions of aggregate coatings. 
Research has revealed that using the developed compositions of secondary carriers leads to activation of the 

catalyst and demonstration their satisfactory catalytic activity exhibited even in case of such primary carriers, 

which in the absence of the secondary coating of the carrier have an inhibitory effect on the catalytic activity. 

3. The surface morphology of the synthesized secondary carriers and catalyst layer 

Synthesized secondary coatings in accordance with the proposed method are formed on the foil surface and 

are in the form of oxide system of amorphous or glass crystalline adhesion. The primary carrier is a foil of NiCrA 

alloy (the same as NiCr80/20, Ni80Cr20, Chromel A, N8, Nikrothal 8, Resistohm 80, Cronix 80, Nichrome V, 

HAI-NiCr 80). In this paper the following compositions of oxide systems of the secondary carriers are 

investigated: manganese-aluminum-boron (MAB), nickel-aluminum-boron (NAB) cobalt-aluminum-boron 

(CAB), scanning electron microscopy of surfaces of which is shown in Figure 1. 

The coatings of all above compositions have high mechanical strength and adhesion to the metal surface and 

continuity. On the foil surface coating were formed. Mechanical strength of coatings was studied visually in 

locations of multiple foil bends to almost zero radius. It has been shown the lack of cracks and chips on the 

surface of the coating in a bends. Thermal stability of the catalytically active coating on the surface of the metal 

foil was demonstrated by carrying out thirty thermal cycles of 1,000°C to room temperature, it was demonstrated 

no delamination of the coating from the support and cracks of the coating after such heat treatment. 

Investigation of the structure of coatings was carried out by optical, scanning electron and atomic force 

microscopy. 

 

   
a)    b)    c) 

Figure 1. Exterior of glass crystalline coatings: Ni-Al-B (a), Co-Al-B (b), Mn-Al-B (c). Scanning electron microscopy 
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As seen from Figure 1a Ni-containing coating is continuous, completely covers the carrier a foil of NiCrA alloy 

and has a granular surface structure containing a small amount of crystalline inclusions of alleged compositions 

of Al4B2O9, Al5(BO3)6, Al13B4O33 (according to X-ray crystallography). Co-containing coating is also 

characterized by continuity and the absence of cracks developed at the micro level, and is different from the Ni-

containing coatings by lack of crystalline inclusions (according to X-ray crystallography), as well as by presence 

of few light granular structures. Mn-containing coating is characterized by developed system of cracks and 

grooves at the micro level, the smoothness of the surface, which allows the identification of this covering as 

glass. It was confirmed by X-ray crystallography data. On the surface of the Mn-containing coating (Figure 1b) 

the significant bright droplet formations are also noticeable. 

The typical height of the surface structure of the investigated coating element is from 1 to 2 μm. 

In accordance with the proposed method on the surface of the secondary carrier the catalytically active 

compound layers are formed. In the present study, as the catalytically active substance of palladium oxide PdO 

is selected. Scanning electron microscopy of the resulting coatings is shown in Figure 2. 

 

   
a)    b)    c) 

Figure 2. Exterior of catalytically active compound PdO layers on surfaces of glass crystalline coating of compositions 
Ni-Al-B (a), Co-Al-B (b), Mn-Al-B (c). Scanning electron microscopy 

Figure 2 shows that the catalytically active layer of palladium oxide completely shields the surface of the support 

structure of the secondary carrier, which means that the thickness of the PdO layer reaches up to 1 μm, which 

corresponds to the amount of applied palladium oxide. 

From Figure 2a follows that the use of Ni-containing glass crystalline phase as a secondary carrier for catalyst 

based on palladium oxide forms a continuous surface characterized by a developed system of microcracks and 

absence melted and smoothed cracks edges. Figure 2b shows that on the surface of Co-containing coating the 

layer of palladium oxide forms more dense network of cracks as compared to nickel-based system. This surface 

is also characterized by the presence of a small amount of rounding chips and cracks. 

Figure 2c shows the structure of the surface of the catalyst layer of palladium oxide on the secondary Mn-

containing carrier. The surface layer of palladium oxide completely shields the developed cracks system 

inherent to the structure of the secondary carrier surface. Catalytic surface is also characterized by clearly 

expressed with smooth lines of grooves edges, the lack of cracking, chipping, which indicates the active 

processes of glass transition at the moment the layer of palladium oxide catalyst formation and consequently 

possible redistribution of parts of palladium oxide from a coating surface to its bulk. 

4. Determination of catalytic activity of the composite coatings 

The catalytic activity of the synthesized catalytic coatings in gas conversion processes was determined using 

flow type bench model. Tests of the catalytic converters were carried out in benzene oxidation reactions. To 

determine the amount of gaseous components that are part of exhaust gases measuring devices "Infrakar" and 

"Oxy" were used. Conditions for the determination of the catalytic activity are follows: the linear velocity of the 

gas mixture is 1.5 m/s, the particle size of the catalyst is 5×10 mm, heating rate is 10 °C/min. The composition 

of the model mixture containing benzene is benzene (10 g/m3) and air (everything else). 

To determine the effect of composition of the secondary carrier each of sample was impregnated with 

catalytically active compounds PdO of the same qualitative and quantitative composition. Obtained in such way 

catalytic compositions were examined on research stand. 

Figure 3 shows the temperature dependence of the conversion degree of the test compound - benzene - for 

coatings of the aluminum-boron composition series. 
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Figure 3. Temperature dependence of the benzene conversion degree X for coatings compositions of the MAB, 

NAB and CAB 

As shown by the experimental data presented in Figure 3, the temperature dependence of the degree of 

benzene conversion in cases of various compositions of secondary catalyst supports have their own 

characteristics. 

Each graphical representation of experimental data given on Figure 3 has two sections: a low temperature 

section (corresponding to limitation of benzene conversion process by chemical processes on the surface of the 

catalytic coating) and high temperature section (corresponding to limitation of benzene conversion process by 

features of mass transfer in the system "gas stream - the catalytic surface coatings"). 

The change in the degree of conversion dependency on temperature in the low temperature section is influenced 

by such factors as the number of available catalytic sites for adsorption and their energy distribution. 

At high temperature section all active centres participating in catalytic processes are about equivalent 

energetically therefore the key factor determining the completeness of benzene conversion in the final product 

CO2 is the quantity and availability of active sites for molecules adsorbed starting substances. 

The temperature dependence of the degree of benzene conversion to the final product carbon (IV) oxide has 

two stages of heterogeneous catalytic process. 

Separation set of data points into groups corresponding to the stages of benzene conversion, in accordance 

with (Ved’ et al., 2015) allows to determine parameters such as the observed value of the activation energy and 

pre-exponential factor, as well as the value of mass transfer coefficient according to methodology presented by 

Krasnokutskii and Ved’ (2013a) which takes into account two benzene oxidation mechanisms: catalytic 

mechanism on the surface of the catalytic converter and a thermal radical mechanism in the core gas flow. 

Determination of the observed values of activation energy, pre-exponential factor and mass transfer coefficient 

was performed on the basis of concepts that benzene conversion process takes place not only on the surface 

of the catalyst by the catalytic mechanism but also in the gas flow by a radical chain mechanism. 

The radical reaction rate in the gas flow is additionally influenced by such factors as the benzene concentration 

in a gas flow, flow structure and its mixing intensity. Taking into account these factors makes it possible to obtain 

an equation of benzene conversion rate in the carbon (IV) oxide, which takes into account heterogeneous 

catalytic process and benzene oxidation by radical chain mechanism. In the integral form of this equation for 

limitation of benzene conversion process by chemical processes on the surface of the catalytic coating has the 

following form: 


  

     
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(1) 

where E is the observed activation energy, J/mol, k0 is the Arrhenius pre-exponential factor, m/s, R is the 

universal gas constant, J/K×mol, τ is the contact time, s, T is the actual temperature in the reaction zone K, Re 
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is the Reynolds number, Ckat is the surface concentration of the catalytically active compounds, kg/m2, V is the 

reactor volume, m3, C0 is the initial concentration of benzene, mol/m3, a, b, and c are constants. 

The main performance indicators of benzene heterogeneous catalytic conversion process on the surface of the 

synthesized catalysts are given in Table 1 below. 

Table 1: Performance indicators of benzene heterogeneous catalytic conversion process 

The 

secondary 

carrier  

The observed 

value of the 

activation 

energy, 

J/(mol×K) 

The pre-

exponential 

factor, m/s 

The surface reaction 

rate constant at 

320 °C, m/s 

The length of the reactor 

on which 95% 

conversion is reached at 

320 °C in case of 

absence of external 

diffusion resistance, m 

Mass transfer 

coefficient at 

380 °C, m/s 

NAB 204,000 6.4×1019 64.7 0.13 0.0118 

CAB 165,000 1.7×1015 5.1 1.68 0.0108 

MAB 169,000 2.4×1015 3.0 2.80 0.0054 

5. Analysis of experimental data 

The catalytic coatings synthesized on the surface of the Ni-containing and Co-containing secondary carriers are 

characterized by close values of the degree of benzene conversion and respectively close values of mass 

transfer coefficients in the high-temperature section. This fact is explained as follows. At high temperatures the 

entire heterogeneous catalytic process is limited by mass-transfer processes, so features of chemical kinetics 

at the catalyst surface did not affect to mass transfer. Therefore only the coverage degree of the catalyst surface 

by active sites affects on the value of the mass transfer coefficient. 

Indeed, the total absence of signs of melting and vitrification of the catalyst layer on the NAB coatings surface 

and the presence of inclusions of crystal phase in it, as well as minor signs of catalyst vitrification on the CAB 

surface coating, promotes more complete localization palladium oxide PdO on the surface and not in the deep 

layers of the secondary coatings, where it is much more difficult to access for the reactants from the gas phase. 

Thus the similarity of the surface structures of the catalyst layer on the secondary carriers indicates to similar 

values of surface concentration of palladium oxide and hence the mass-transfer coefficient and the degree of 

benzene conversion at high temperatures. 

In the case of using Mn-containing secondary carrier the lowest values of benzene conversion rate and mass 

transfer coefficient are observed. 

Significant scale of glass transition and melting of MAB surface secondary carrier compared to coatings NAB 

and CAB at the time of the catalytic coating PdO synthesis indicates migration of palladium oxide from the 

surface of the secondary carrier to its deep layers, as well as the wetting surface layer of PdO by liquid phase 

at the time of vitrification. This reduces the amount of available for the adsorption and acts of catalytic interaction 

active sites of the catalyst. 

Features of the temperature dependence of the degree of benzene conversion for catalysts on various 

secondary carriers are explained by differences in the characteristics of the interaction of palladium oxide with 

NAB, CAB and MAB oxides systems on a chemical level at the moment of the formation of the catalytic coating. 

The experimental data shows that the significant increase in constant speed at the given temperature can be 

achieved by means of: 

 Selection of the composition of secondary carrier containing a promoter components; 

 Selection of the composition of secondary carrier, the formation of which will form crystalline inclusions; 

 Selection of the secondary carrier composition with a maximum possible vitrification temperature to avoid 

the dissolution of the catalyst in the secondary carrier. 

6. Conclusions 

The results of these studies show the effectiveness of the use of secondary catalysts carriers synthesized by 

the newly developed method, which allows carrying out the process of the formation of the catalyst in a relaxed 

state. Synthesized secondary carriers effectively shield the layer of catalytic material on the possible inhibitory 

effect of the chemical components that are part of primary carrier of ceramic or metallic nature, modify and 

promote the catalyst layer, increase the life of the mechanical integrity of the catalytic coating in a cyclic thermal 

loads due to the damping properties of the secondary carrier. 

Conducted comprehensive study of surface morphology of catalysts and their catalytic activity in the oxidation 

of benzene revealed general patterns the structure and physicochemical properties of the surface of the 
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secondary carrier that provide increase in the chemical reaction surface rate constant and the mass transfer 

coefficient from the gas stream to the catalyst surface. 
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