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This study investigates using of robust model based predictive control (MPC) algorithms for optimal operating 

of heat exchangers in series from the stability and economic viewpoints. For the advanced controller design, 

the influence of uncertain parameters was taken into account. In order to design the robust MPC, the 

optimization problem with constraints was formulated in the form of linear matrix inequalities and then the 

convex optimization problem was solved using the semidefinite programming. The designed robust MPC 

strategies were based on the worst-case optimization and on the additional control input saturation. We 

investigated a case study with two various significant disturbances in the temperature of the input stream in 

the heat exchangers in series. Results revealed that the robust MPC improved control performance and 

ensured energy savings during the heat exchanger network operation.  

1. Introduction 

Shell-and-tube heat exchangers (HEs) attract the interest of specialist in chemical engineering and process 

control. The heat losses can rise up to 50 % and therefore it is necessary to implement advanced control 

strategies and to optimize the operation of HEs. In (Doodman et al., 2009) a robust stochastic approach for 

optimization design of air cooled heat exchangers is studied and the results reveal that the harmony search 

algorithm converges to optimum solution with higher accuracy in comparison with genetic algorithms. The 

work of Vasičkaninová et al. (2011) shows that using the neural network predictive control (NNPC) structure 

for control of heat exchangers can lead to energy savings. The robust model predictive control (RMPC) for 

passive building thermal mass and mechanical thermal energy storage was designed and its features were 

deeply investigated in Kim (2013). In our previous work Bakošová et al. (2014) we investigated RMPC design 

of a heat exchanger network (HEN), and we designed an alternative RMPC procedures for HEN in paper 

Oravec et al. (2015). This paper investigates the use of RMPC algorithms for optimal operating of a HEN from 

the economic viewpoint. In order to design RMPC, the optimization problem with constraints is formulated in 

the form of LMIs and then the convex optimization problem is solved using the semi-definite programming 

(SDP). RMPC strategies are based on the worst-case scenario optimization (Kothare et al., 1996) and the 

additional control input saturation (ACIS, Cao et Lin, 2005). To demonstrate the effectiveness of RMPC a case 

study is considered. Robust stability, violation of the constraints, total energy savings, and overall 

computational complexity are analysed. Simulation results reveal that RMPC ensures the optimal operation of 

the HEN with uncertainty. 

2. Robust MPC of heat exchanger network 

Three counter-current shell-and-tube heat exchangers in series form the controlled simple heat exchanger 

network. The investigated HEN is a part of the kerosene hydrotreating technology in a refinery (Figure 1). 

Hydrogenated kerosene is the component of diesel and is produced in a reactor. The light fractions arise 

during the hydrogenation and have to be removed from the product.  
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Figure 1: Scheme of the HEN: (1) input stream, (2) product, (3) 3rd HE, (4) 2nd HE, (5) 1st HE, (6) and (7) 

pumps, (8) stabilizer, (9) furnace, (10) valve, (11) natural gas 

The hydrogenated kerosene – product has to be stabilized in a stabilizer. The stream inputs to the stabilizer 

from the cold separator – storage tank. The temperature of the input stream changes from 14 to 27 °C. The 

input stream to the stabilizer is preheated in the HEN by the product stream that leaves the bottom of the 

stabilizer.  The other stream leaving the bottom of the stabilizer is heated in the furnace and returned to the 

bottom of the stabilizer. The temperature of this stream determines the temperature at the bottom of the 

stabilizer and also the temperature of the product. The light fractions leave the top of the stabilizer. The input 

stream to the stabilizer flows through the tubes of HEs, and the heating stream flows over the tubes through 

the shell of HEs. The tubes of the HEs are made from steel. The objective is to pre-heat the input stream to 

the reference value 182 °C and to minimize the energy consumption measured by the total consumption of 

natural gas in the furnace. The control input is the temperature at the bottom of the stabilizer, which 

determines the natural gas consumption in the furnace. The inlet temperature of the heating stream to the 

HEN is the same. The controlled output is the temperature of the input stream to the stabilizer. 

The mathematical model of the HEN was derived using the heat balances under the following simplification 

(Ingham, 2007): the thermal capacities of the metal walls are neglected; the HEs are well insulated; heat loss 

to the surroundings and mechanical work effects are negligible; the technological parameters are either 

constant or vary in some intervals. The heat balances for the HEN lead to the six first-order ordinary 

differential equations given by 

  𝑉1𝜌1𝑐𝑝,1
𝑑𝑇1

𝑗(𝑡)

d𝑡
=

𝐴h𝑈

2
((𝑇2

𝑗(𝑡) − 𝑇1
𝑗+1(𝑡)) + (𝑇2

𝑗−1(𝑡) − 𝑇1
𝑗(𝑡))) + 𝑞1𝜌1𝑐𝑝,1 (𝑇2

𝑗(𝑡) − 𝑇1
𝑗+1(𝑡)), (1) 

  𝑉2𝜌2𝑐𝑝,2
𝑑𝑇2

𝑗(𝑡)

d𝑡
=

𝐴h𝑈

2
((𝑇2

𝑗(𝑡) − 𝑇1
𝑗+1(𝑡)) + (𝑇2

𝑗−1(𝑡) − 𝑇1
𝑗(𝑡))) + 𝑞2𝜌2𝑐𝑝,2 (𝑇2

𝑗(𝑡) − 𝑇1
𝑗+1(𝑡)), (2) 

where T1
j(0) = T1,0

j, T2
j(0) = T2,0

j are initial conditions and the superscript j = 1, 2, 3,  stands for the 1st, 2nd, 

and the 3rd heat exchanger, respectively. The subscripts 1 and 2 indicate the heated and the heating stream, 

respectively. In Eqs(1)–(2), V is the volume, ρ is the density, cp is the specific heat capacity, t is the time, T(t) 

is the time-varying temperature, q is the volumetric flow rate, Ah is the heat transfer area and U is the overall 

heat transfer coefficient. The initial conditions T1,0
j and T2,0

j in Case I are 169.7 °C, 119.0 °C, 67.1 °C, 180.7 

°C, 130.3 °C, 78.6 °C, and in Case II are 173.6 °C, 123.6 °C, 72.4 °C, 181.4 °C , 131.7 °C, 80.7 °C. Case I 

and Case II represent the situations for two studied scenarios. The Case I represents the situation with a 

disturbance in the inlet stream. The inlet temperature of the input stream changed from 20 °C to 14 °C. The 

Case II represents the situation with the other disturbance in the inlet stream. The inlet temperature changed 

from 20 °C to 27 °C. The values of technological parameters and the steady-state values of the temperatures 

are summarized in Table 1. Here n is the number of the HE's tubes, l is the length of the HE, din,1 is the inner 

diameter of the tube, dout,1 is the outer diameter of the tube, din,2  is the inner diameter of the shell, T1,in = T1
4 is 

the temperature of the inlet stream of the heated fluid to the 1st HE and T2,in = T2
0 is the inlet temperature of 

the heating stream  to the 3rd HE . The superscript S denotes the steady-state value, and the steady-state 

temperatures T1
j,S, T2

j,S, j =1, 2, 3,  were computed for the inlet temperature of the heated stream T1
4,S = 20 °C 
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and of the heating stream  T2
0,S = 230 °C from Eqs.(1)–(2) with zero derivatives. These steady state 

temperatures represent the reference values for control of the HEs. 

Table 1:  Technological parameters and steady-state values of variables in HEs 

Variable Unit Value  Variable Unit Value 

𝑛 1 216  𝐴h m2 89.57 

𝑙 m 6  𝑇1
1,𝑆 ○C 171.3 

𝑑in,1 m 19 × 10–3  𝑇1
2,𝑆 ○C 122.0 

𝑑out,1 m 25 × 10–3  𝑇1
3,𝑆 ○C 71.6 

𝑑in,2 m 850 × 10–3  𝑇2
1,𝑆 

○C 182.0 

𝑞1 m3 s–1  35.5 × 10–3  𝑇2
1,𝑆 

○C 133.0 

𝑞2 m3 s–1 24.0 × 10–3  𝑇2
1,𝑆 

○C 82.8 

𝑐p,1 J kg–1 K–1 2570  𝑇1,in
𝑆 = 𝑇1

4,𝑆 
○C 20.0 

𝑐p,2 J kg–1 K–1 2684  𝑇2,in
𝑆 = 𝑇2

0,𝑆 
○C 230.0 

 

Further, three uncertain parameters are considered in the controlled system: the overall heat-transfer 

coefficient and the densities of the heated and the heating stream. The values of these parameters are given 

in the Table 2, where U is the overall heat transfer coefficient, ρ1 is the density of the input stream, and ρ2 is 

the density of the product. The well-known approach of parametric uncertainties handling was used to 

describe the HEN in the form of a polytopic uncertain system, see (Kothare et al., 1996). Therefore, the set of 

eight vertex systems was generated for all variations of boundary values of three uncertain parameters (Table 

2). 

Table 2: Uncertain parameters of HEs. 

Variable Unit Minimal Value Nominal Value Maximal Value 

U W m–2 K–1 338 375 413 

ρ1 kg m–3 444 447 654 

ρ2 kg m–3 633 651 802 

 

Each vertex system was described by 6 ordinary differential equations Eqs.(1)–(2). The control performance of 

the controlled process was investigated using these eight limit-behaviour models. The nominal system of the 

HEN was created for the situation with the inlet temperature of the heated stream T1
4,S = 20 °C and the inlet 

temperature of the heating stream T2
0,S = 230 °C. This model served as the reference system. The non-linear 

state-space model of the controlled process Eqs(1)–(2) was linearized for the robust controller design using 

the 1-st order Taylor expansion of nonlinear terms (Mikleš and Fikar, 2007), and the linear state-space model 

of the HEN was obtained for the nominal system and each vertex system in the form of six ordinary linear 

differential equations.  As RMPC is a discrete-time control strategy, the linear continuous-time models were 

transformed into the discrete-time domain using the sampling time ts = 1 s. The value of the sampling time 

does not directly influence the RMPC design. It has to be chosen so that obtained discrete-time model 

matches the behaviour of the nonlinear model with sufficient accuracy. Finally, the model of HEN was 

transformed into the form of a state-space system in the discrete-time domain (Mikleš and Fikar, 2007) 

described by 8 vertex systems, see (Kothare et al., 1996). 

3. Results and discussion 

The simulation results of robust model predictive control of HEN were obtained using 1.7 GHz and 4 GB RAM. 

The simulations were done in the MATLAB/Simulink environment; RMPC was managed by our free-available 

MUP toolbox (Bakošová and Oravec, 2014). The optimization problem of semidefinite programming was 

formulated by YALMIP toolbox (Löfberg, 2004) and solved by solver MOSEK. 

To optimize operation of the HEN with uncertainty we designed RMPC by Kothare et al. (1996), denoted by 

RMPC1 (Cao and Lin, (2005) represented RMPC2. RMPC was compared with the well-known discrete-time 

optimal control (LQR) based on the solution of the matrix Riccati equation, see e.g. (Mikleš and Fikar, 2007). 

LQR was designed with the same conditions as RMPC1, RMPC2 to make the results fully comparable, i.e. the 

weight matrices of the quadratic quality criterion were Wx= diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), Wu = 0.1. The 

input and output constraints were set to keep the control input volumetric flow-rate q in ± 20 °C and the system 

output in ± 10 °C neighbourhoods of the steady-state values, respectively. 

255



The designed RMPC was studied in the presence of two various disturbances. The first control scenario 

(Case I) considered that the temperature of the input stream decreased from its steady-state value 20 °C to 

the temperature 14 °C. The second scenario (Case II) considered increase of the temperature of the input 

stream from its steady-state value 20 °C to the temperature 27 °C. The initial conditions for the Case I and 

Case II are in Table 1. We investigated the temperature control of the output stream from HEN in the Case I. 

The aim of control was to eliminate the influence of the over described disturbance. From the robust control 

viewpoint, it was not important to assign each control trajectory to the particular vertex system. The main 

purpose was to point out the range of admissible behaviour of HEN. Results generated by RMPC1 are shown 

in Figure 2 a). From the robust control viewpoint, it was not important to assign each control trajectory to the 

particular vertex system. The main purpose was to point out the range of the admissible behaviour of HEN. 

RMPC1 ensured satisfying fast control performance. As a side effect of such behaviour, there was the slight 

overshoot in some vertex systems. Figure 2 b) shows the results of RMPC2. It is obvious, that the control 

performance is quite similar to RMPC1. The mass of the natural gas needed in the furnace for preparing the 

hot product stream (Figure 1) was also studied. Table 3 summarizes the total consumption of the natural gas 

during the simulation of control during 1,000 s, where the values of mLQR were evaluated for LQR, mRMPC,1 for 

RMPC1, and mRMPC,2 for RMPC2. All eight vertex systems were considered. The 0-th vertex corresponds to the 

nominal system. The nominal system can be obtained for the uncertain system with the nominal values of 

uncertain parameters, see Table 2. We analysed the data in Table 3 also by the relative savings of the natural 

gas defined as 

Δ𝑚RMPC,1
(𝑣)

=
𝑚LQR

(𝑣)
 − 𝑚RMPC,1

(𝑣)

𝑚
lQR
(𝑣) × 100 %,   Δ𝑚RMPC,2

(𝑣)
=

𝑚LQR
(𝑣)

 − 𝑚RMPC,2
(𝑣)

𝑚
lQR
(𝑣) × 100 %,    (3) 

where v = 0, 1, …,8. The Figure 3 shows the relative saving of natural gas in RMPC1 and RMPC2 approaches, 

respectively. As can be seen, except of one vertex, there was ensured the improvement from 0.3 % up to 

11.6 % by RMPC1, and the improvement from 0.2 % up to 12.1 % by RMPC2. On the other hand, the worst 

values were -0.7 %, -0.5 % using RMPC1, RMPC2, respectively. We recall that this situation occurred just in 

one vertex. Compared to LQR-based control, RMPC-based strategies were able to increase savings of natural 

gas in about 4 % also for the nominal system in the both RMPC strategies. The results of the Case II are 

further discussed, see Figure 4. We also investigated the control responses of the temperature of the output 

stream of the HEN. In Case II the temperature also converged to the reference for all vertex systems, cf. 

Figure 2. RMPC1 approach also assured the convergence of the output temperature to the required value 

(Figure 4 a)). The results of RMPC2 are shown in Figure 4 b) and they are similar to those obtained by 

RMPC1, cf. Figure 2 b). 

 

a)  b) 

 

Figure 2: Control responses of the temperature of the outlet stream of the HEN in Case I: a) RMPC1, b) 

RMPC2; control trajectories for system vertices (solid) and reference (dashed) 

Figure 5 shows the relative saving of natural gas in RMPC1 and RMPC2 strategies subject to LQR, 

respectively. These results are different compared to the Case I, due to the fact that RMPC1 and RMPC2 

methods ensured the relative improvements for all vertex systems. The relative savings of natural gas in 

RMPC1 varied from 0.9 % to 13.2 %. The relative saving for the nominal system was 5.0 % (Figure 5 b)). The 

relative improvements generated by RMPC2 varied also from 0.9 % to 13.2 %. The relative saving for the 
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nominal system was 5.2 % (Figure 5 b)). We analysed the control performance for two admissible 

disturbances. In both cases, the control responses obtained by RMPC1 and RMPC2 approaches were quite 

similar. The highest relative consumption of natural gas ΔmRMPC,1
(1) = -0.5 %  in Case I was less compared to 

the ΔmRMPC,1
(1) = -0.7 % in Case II. 

 

a)  b) 

 

Figure 3: Relative savings of natural gas ensured by RMPC subject to LQR in Case I: a) RMPC1, b) RMPC2 

Table 3:  The total consumption of the natural gas in LQR, RMPC1, and RMPC2 approaches in Case I and 

Case II 

Vertex 𝑣 𝑚LQR
I (𝑣)

[kg] 𝑚RMPC,1
I (𝑣)

[kg]  𝑚RMPC,2
I (𝑣)

[kg] 𝑚LQR
II (𝑣)

[kg] 𝑚RMPC,1
II (𝑣)

[kg] 𝑚RMPC,2
II (𝑣)

[kg] 

0 33.828 32.517  32.557 33.828 32.130 34.846 

1 33.777 33.932  34.022 33.842 33.526 33.525 

2 33.826 33.720  33.761 33.865 33.528 33.527 

3 33.842 33.683  33.683 33.826 33.478 33.463 

4 33.865 33.681  33.682 33.896 33.523 33.522 

5 33.896 33.685  33.686 33.933 33.518 33.517 

6 33.933 33.689  33.690 33.777 33.268 33.144 

7 33.843 30.650  30.603 33.843 30.190 30.111 

8 33.781 29.879  29.682 33.781 29.310 29.336 

 

a)  b) 

 

Figure 4: Control responses of the temperature of the output stream of the HEN in Case II: a) RMPC1, b) 

RMPC2, control trajectories for system vertices (solid) and reference (dashed) 
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On the other hand, the maximal saving of natural gas assured by RMPC2 ΔmRMPC,1
(8) = 13.2 % in Case II was 

the same as RMPC1 in Case II. In general, simulation results confirmed that the RMPC-based strategies 

improved the control performance and increased the energy savings compared to the LQR control.  

a)  b) 

 

Figure 5: Relative savings of natural gas ensured by RMPC subject to LQR in Case II: a) RMPC1, b) RMPC2 

4. Conclusions 

This paper presents the advanced robust model predictive control design for the optimization of the heat 

exchangers in series with uncertain parameters. We investigated a case study with two various significant 

disturbances in the temperature of input stream in the heat exchanger network. Although the input 

temperature varied from 14 °C to 27 °C, RMPC-based methods ensured the more aggressive control action to 

keep the temperature at the required reference than the well-known LQ optimal control approach. Moreover, 

the total consumption of the natural gas used in the technology with HEN was reduced up to 13 % in 

comparison to the LQ optimal control strategy during operation lasting 1,000 s. In practice it may lead to the 

significant energy savings and reduction the overall input costs of HEN utilization. 
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