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Damages in pipes such as cracks and corrosions may threaten the integrity of pipeline. Using ultrasonic 
guided waves to detect these defects is efficient. The waves propagate in the pipe wall and carry information 
of the entire structure. The signal of damages is included in the reflections of guided wave. Ultrasonic guided 
waves are dispersive in waveguides, which means the speed of the wave is dependent on frequency. And 
under a certain frequency, there are multiple modes exist. The characteristic of dispersion and multi-mode 
make guided wave testing difficult to solve in analytical ways. Finite element method is an efficient way to 
investigate the problems. To assess damages in pipes, a 3-D pipeline finite element model was set up with 
artificial defects vary with depths and circular lengths. Taking the circular distribution of guided wave reflection 
into consideration, two series of defects changing in depth and circular length were introduced in numerical 
simulation. Circular energy distribution was put forward to assess the defect. Mode conversion will occur when 
the axisymmetric mode of guided wave meet nonaxisymmetric discontinuities in the pipe. The incident L (0, 2) 
converts into F(1,3) and enhances the energy on the opposite position of the defect. The circular energy 
distribution was proved feasible for damage assessment in pipes.  

1. Introduction 

Damages in pipes such as cracks and corrosions may threaten the integrity of pipeline. To detect such defects 
in pipes, ultrasonic guided wave is an efficient way. Guided waves are elastic waves propagating inside the 
structure. Constrained by the border of the structure, reflection and refraction will occur on the inter-surface of 
the mediums. Guided waves are composed of the superposition and coupling of the reflected waves. When 
there are defects in the structure, these discontinuities will affect the propagation of guided wave, making 
defects detection realizable.  

2. Guided wave in pipes 

Wave speed is an important character of guided wave as it is related to the accuracy of the defect location. 
There are two kinds of guided wave velocities: phase velocity and group velocity. The phase velocity is the 
transmission speed of a certain point on a wave phase, while the group velocity is the speed of a package of 
waves. Bulk wave and guided wave are both ultrasonic waves in structures, and they are controlled by the 
same equation; however, guided wave needs to satisfy boudary conditions of the structure. It is reflected and 
refracted at the interface of the structure edge. Moreover, guided wave is the dispersive. Dispersion is a 
phenomenon that wave speed changes with frequency, which means guided wave speed is dependent on the 
generation frequency. According to the derivation of Gazis (1957), the dispersion equation of guided wave in 
pipes is Eq(1). 

Dij=0, i, j=1,2,3,…6      (1) 

According to the expression of Meitzler (1961), Zemanek (1972) and Silk, Bainton (1979), the modes of 
guided waves in a pipe could be shown as: 
Longitudinal mode: L (0, m) axisymmetric mode 
Torsional mode: T (0, m) axisymmetric mode 
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Flexural mode: F (n, m) nonaxisymmetric mode 
Here n means the circular order of guided wave, and m means the number of modes under a certain circular 
order n. While n=0, Eq(1) could be expressed as: 

D=D1D2=0D1=0, D2=0      (2) 

The solutions of Eq(2) are L modes and T modes respectively, and there are infinite numbers of L and T 
modes. While n≥1, under each circular order n, there are infinite numbers of L, T and F modes. This is the 
mutli-mode characteristic of guided wave in a pipe. The solution of Eq(1) also gives the dispersion curves of 
guided wave. Curves of 5 typical modes are displayed in Figure 1: 
 

 

Figure 1: Dispersion curves of a pipe with internal diameter 150 mm and wall thickness 4 mm 

There are two modes in Figure 1 worth mentioning. One is L(0,2). This mode appears after a certain cut off 
frequency and the group velocity of which remains almost constant in a long spectrum. And in practical 
situation, L(0,2) mode is easy to generate and with low energy attenuation, so this longitudinal mode is widely 
used in guided wave testing. The other one is T(0,1) mode. It is the only mode without dispersion. It is also 
popular in defect testing using guided wave. 

3. Finite element model of guided wave in pipes 

As the dispersion equation of guide wave is still unsolved in analytical ways, many researchers have adopted 
finite element method to investigate the problem numerically. Moreau (2012) carried out an accurate finite 
element modelling of guided wave scattering from irregular defects. Benmeddour (2011) studied the 
interaction of guided wave with non-axisymmetric cracks in elastic cylinders using finite element modelling. 
Willberg (2012) compared different higher order finite element schemes for the simulation of Lamb waves. 
Vanli (2014) explored damage detection problems Lamb wave through finite element method. 

3.1 Generation of guided wave 
Present finite element generation method is uploading excitation signals at the outer surface of one pipe end 
(Wang, 2010). According to our research, such method will generate surface waves together with guided 
waves, which is not proper for analyzing. Therefore, we changed the generation position from the outer 
surface to the central line of pipe end, uploading displacements signals at the central nodes of the end. The 
generation signal was a 5-cycle sinusoidal wave modulated by Hanning Window. Eq(3) shows the generation 
signal. 
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Where A is the amplitude parameter, f is central frequency, and n is period number. Figure 2 shows the 
comparison of two generation ways. The top part is present generation way, and the bottom part is the 
improved one in this paper. The incident wave and reflected wave are marked in Figure 2.  
The surface waves in the present generation were successfully avoided in the improved generation. 
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Figure 2: Comparison of two-generation ways of longitudinal guided wave in a pipe 

3.2 Finite element model 

Using finite element method, a numerical model of a pipe with length 1,500 mm, internal diameter 150 mm 
and thickness 4 mm was constructed. In order to acquire higher computational accuracy, a “slicing-mapping-
sweeping” meshing strategy was proposed. The model geometry was first sliced into several volumes to meet 
the requirement of mapping, then the lines and areas were meshed with mapped elements, at last, the entire 
pipe model was swept to form mapped volume elements. Such meshing measure could enhance 
computational accuracy while reducing the burden of computer.  
Figure 3 shows the finite element model of guided wave in a pipe. The distance between the defect and the 
generation end was 1 m. The defect was magnified and shown on the right part of the figure. Table 1 
proposes the material properties used in finite modellings. 
 

 

Figure 3: Finite element model of guided wave in a pipe 

Table 1: Structural material properties used in numerical process 

Content name  Heading 2 
Density(kg/m3) 7,850 
Poisson ratio 0.29 
Elasticity modulus(GPa) 219 

4. Results and discussion 

4.1 Efficiency of the model 
To verify the efficiency of the finite element model, a series of defects with various axial lengths were 
introduced to see the changing of reflection coefficient. The T (0, 1) mode was selected and generated in the 
model by loading tangential displacements on the outer surface of the pipe end. As the degree of freedom of 
the excitation nodes was constrained while generation, nodes at the location 0.2 m from the pipe end were 
chosen to collect vibration.  
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The circular length of the defects was 1º uniformly, and with thorough depth. The axial length of the defects 
changed from 2.5 mm to 30 mm, and the dimension of axial length was normalized to be shown with 
percentage of wavelength. Reflection coefficients of defect with each axial length were displayed in Figure 4. 
 

 

 Figure 4: Reflection coefficient of defects with different axial lengths (Compared with Demma, 2003) 

Demma (2003) reported an application of T(0,1) mode detecting longitudinal defects and gave the relationship 
between reflection coefficient and defect axial length. The reflection coefficient of this paper revealed the 
same regulation with the results of Demma, suggesting the efficiency of the finite element model.  

4.2 Reflection from defects with various depths 

To understand the relationship between the reflection coefficient and the depth of defects, a series of defects 
with various depths were introduced in the model. The circular lengths of the defects were all 12.5 % of 
perimeter and with a constant axial length 3 mm. The depth changed from 20 % to 80 % of pipe wall thickness.  
Applying axial displacements on the central nodes of a pipe end will generate longitudinal guided wave in the 
pipe. The generated wave was L (0, 2) mode after checking. 16 monitoring points were selected averagely 
around the circle of the pipe. Moreover, parts of the circular engergy distributions were shown in Figure 5. 
 

 

 Figure 5: Circular distribution of reflections from defects with various depths (of wall thickness) 

It is obvious in Figure 5 the reflection amplitude increases along with defect depth. All of the defects located 
from 0°-45° on the pipe circle. The energy around this scope is low, and the reflection energy starts to 
increase at the semi-circle on the other side of the defect. That is, the reflection begins stronger between 135° 
and 270°, just on the opposite semi-circle of the defect. The circular energy increases from the two directions 
and reach its maximum at about 207°, which is about the opposite position with the defect. 
According to the analysis of Alleyne (1998), guided wave mode will convert into F (1, 3) if the incident mode is 
L (0, 2). This mode convertion will take place after the incident L (0, 2) mode comes across nonaxisymmetric 
discontinuities in the pipe. Therefore, if the defect is not axisymmetrc, there will be mode convertion and F (1, 
3) will occur on the condition of L (0, 2) generation. Considering cylindrical coordinate system, L (0, 2) mode 
has motion components on the r and z directions, and the component on the θ direction is zero. However, F (1, 
3) mode has motion components on all the three directions. Figure 6 shows motion components of three 
modes. 
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Figure 6: Motion components of three modes of guided waves 

It can be seen from the wave motion that the enhancement of the energy on the opposite position of the defect 
was aroused by mode F (1, 3) converted from L (0, 2). Incident guided wave L (0, 2) encountered such kind of 
damages and converted into F (1, 3). The F (1, 3) mode has a vibration radially and made the circular energy 
start to increase at 90° on both sides of the defect, and at last reached the maximum on the opposite position 
to the defect.  

4.3 Reflection from defects with various circular lengths 

To study the relationship between the reflection coefficient and the circular length of the defect, a series of 
defects with different circular lengths were introduced in the simulation. The defects were with a uniform depth 
20 % of wall thickness and axial length 3 mm. Circular lengths of the defects changed from 5 % to 40 % of 
perimeter. All the defects extent started at 0° circularly. Energy distributions of monitoring points on the outer 
circle 0.2 m from the piep end were collected and shown in Figure 7.  
 

 

Figure 7: Circular distribution of reflections from defects with various circular lengths (of perimeter) 

The energy distribution in Figure 7 reveals a similar law with Figure 5, that is, on the scope of defect, the 
energy is low and remains almost unchanged under each circular length. The energy begins to increase at the 
semi-circle on the other side of the defect, and reaches the maximum on the opposite position of the defect. 
Like the previous analysis, such energy distribution was caused by mode convertion from incident L (0, 2) into 
F (1, 3). The guided waves in the pipe could not be treated as a single longitudinal mode. The circuar energy 
distribution was a compositive result of L (0, 2) and F (1, 3) together. 
In Figure 7, when the circular length of defect is 5 % of perimeter, which means the extent of defect is 0°-18°. 
The amplitude of circular energy starts to increase from around 270° and 90° on the two sides of the defect. 
The opposite position of defect is 180°-198°, and the maximum amplitude lies in the area in the picture. When 
the circular length is 12.5 % of perimeter, the defect extended from 0° to 36°. The circular energy starts to 
increase from about 300° and 120° and reach the maximum between 180° and 216°. Which means the 
circular energy rises at the semi-circle on the opppostie side of the defect in the pipe. The last four 
distributions also show such a rule. Moreover, as the circular length of the defect increases, the entire circular 
distribution appears a “rotation” inclination.  
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5. Conclusions 

Guided wave reflections from defects in pipe were investigated in the paper. Guided wave is a kind of elastic 
wave in solid media. Ultrasonic waves reflect and refract at the bourder of the structure and form guided 
waves through superposition and coupling. Detecting damages in pipes using ultrasonic waves is attractive 
and efficient. The group velocities were acquired by solving the dispersion equation of guided wave in a pipe 
numerically. There are three basic modes of guided waves in a pipe: longitudinal mode, torsional mode and 
flexural mode, and each mode has an infinite number of orders. Group velocities of 5 typical modes were put 
forward.  
To assess damages in pipes using guided wave, a numerical model was constructed by finite element model. 
Applying excitation signals on the central nodes of a pipe end could generate guided waves in the pipe and 
avoid surface waves existed in other studies. After efficiency validation of the model, a series of defects were 
introduced to invest the circular energy distributions of guided wave reflections. For nonaxisymmetric defects, 
the discontinuities will bring about mode convertion and F(1,3) will occur when the incident mode is L (0, 2). 
The vibration of F(1,3) also makes the circular energy higher on the opposite position of the defect. The 
energy starts to increase at the semi-circle on the other side of the defect and reaches the maximum at the 
opposite position. The distribution of reflection from circular length changing defects shows a “rotation” 

inclination. The changing rule of the circular energy distribution of guided wave reflections from defects can 
serve as assessment of damages in pipes. 
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