

VOL. 51, 2016

DOI: 10.3303/CET1651003

Guest Editors:Tichun Wang, Hongyang Zhang, Lei Tian Copyright © 2016, AIDIC Servizi S.r.l., ISBN978-88-95608-43-3; ISSN 2283-9216

The Comprehensive Evaluation Model of Fuzzy Mathematics Based on Third Class Cities' Low Carbon Economy

JianliSang

Weifang University of Science and Technology, Shouguang, Shandong, CHINA. 403791013 @qq.com

Large amounts of carbon dioxide emission are the main cause of climate warming, socarbon emission abatement is urgent for the cities. In this paper, the low carbon economy of third class cities is regarded as the research object, and evaluation is regarded as the breakthrough point. The evaluation index system of third class cities' low carbon economy is established. Using AHP to determine the index weight, the fuzzy evaluation model of third class cities' low carbon economy is constructed. This model is used to evaluate the low carbon economy of Weifang, and the result is general, which is consistent with the actual situation. The model is feasible.

1. Introduction

Low carbon economy researches abroad started earlier. In 1987, the study of environmental indexes was carried out in the Netherlands. In 1994, a set of environmental indexes was released in Canada. In 2001, the environmental indexes were launched in the United States (Wang, 2000). While the domestic study of urban low carbon economy is still in the exploratory stage. And its evaluation research is even less. In this paper, on the basis of establishing the evaluation index system of the third class cities' low carbon economy, using the fuzzy comprehensive evaluation method, the third class cities' low carbon economy is evaluated. This method is novel and unique, scientific and reasonable which is feasible (Zhang, 2016).

2. The establishment of evaluation index system of third class cities' low carbon economy

Through the fieldwork to third class city, Weifang, the 5 first-level indexes and 19 second-level indexes of third class cities' low carbon economy evaluation index system could be determined. The detailed indexes are shown in table 1.

	first-level evaluation indexes	second-level evaluation indexes
The	Economic factors A	Resident income A1; Low carbon industry output value A 2. GDP per capita A 3; Financial input A 4;
evaluation index system of	Environmental factors B	Nature reserve area ratio B1; coverage of green land B2; green area per capita B3. Environmental protection investment ratio B4.
third class cities' low	Social factors C	Low carbon popularity C 1; urbanization ratio C 2; car number per capita C 3; housing area per capita C4
carbon economy P	Technical factors D	Acquisition and preservation ratio of greenhouse gas D1; low carbon material ratio D2; utilization ratio of the three wastes D3; garbage disposal D4.
	energy emission factors E	CO2 per GDP E1; SO2 per GDP E2; energy consumption per GDP E3;

Table 1: The evaluation index sy	ustem of third class cities	' low carbon economy

13

3. The introduction of fuzzy mathematics comprehensive evaluation method

Fuzzy mathematics comprehensive evaluation method is one of the most common methods used in fuzzy decision problems.

(1)Determine the evaluation index factor set $P = \{p_1, p_2, \dots, p_n\}$, and there are *n* indexes of the object.

(2)Determine the grade evaluation set $V = \{v_1, v_2, \dots, v_m\}$, and *m* is the grade number of the evaluation.

(3)Determine the fuzzy evaluation matrix $R=(r_{ij})_{n\times m}$, the basic method is as follows:

First of all, make a grade evaluation f(p)(i=1,2,...,n) to all index factors p, we could get a fuzzy mapping f from P to V, namely $f: P \rightarrow F(P), p_i \rightarrow f(p_i) = (r_{i1}, r_{i2}, ..., r_{im}) \in F(V)$

Then, from the fuzzy mapping *f*, the fuzzy relation $R_f \in F(p \times V)$ could be induced, namely $R_f(p_i, v_i) = f(P_i)(v_i) = R_{ij}$ and i = 1, 2, ..., n; j = 1, 2, ..., m.

The fuzzy evaluation matrix could be determined as $R=(r_{ij})_{n\times m}$.

(4)AHP method is used to determine the weights of evaluation indexes at all levels (Han, 2005)

AHP is one of the most common methods that determine the weight. It is an effective method that transforms non-quantitative problems into quantitative problems, by comparing the importance of two indexes to determine the comparison matrix so as to make a decision. The specific process is as follows:

First of all, according to the evaluation index system, the hierarchical structure diagram of the system is established.

Secondly, carry on the multiple comparisons to all the evaluation indexes at the same level, construct comparison matrix by using 1-9 scale value (The specific is shown in table 2.)

Table 2: 1-9 scale value

scale <i>a</i> _{ii}	1	2	3	4	5	6	7	8	9		
Comparison between	The		A bit		etrong		Obviously		Absolute		
index <i>i</i> and index <i>j</i>	same		strong		strong		strong		strong		strong

Thirdly, the determination of the weights of each evaluation index. The geometric average method is used to calculate the weight vector of each evaluation index. The specific process is divided into three steps:

Carry on the product to the elements in each line of the comparison matrix, we could get vector α ; Carry on square root to vector α n times, we could get vector β ; Carry on normalization processing to vector β , we could get index weight vector γ .

Fourth, carry on the consistency check. The process of consistency check is divided into three steps:

Calculate consistency index: CI=(λ_{max} -n)/(n-1), and $\lambda_{max} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{n} a_{ij}r_{j}}{r_{i}}$ is the maximum eigenvalue.

According to the number *n* of evaluation indexes, the random consistency index *R*/could be determined. The specific values are shown in table 3;

Table 3: the random consistency index

n	1	2	3	4	5	6	7	8	9	10	11	12
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.54

Calculate the consistency ratio CR=CI/RI, when CR<0.10, the consistency check could pass. Finally, according to the weight of each evaluation index and the evaluation matrix, using the matrix multiplication, the comprehensive evaluation vector $w=\gamma^T R$ could then be obtained.

4. The fuzzy evaluation model of third class cities' low carbon economy

(1)According to table 1, the evaluation index factor set $P=\{p_1, p_2, \dots, p_{19}\}$ could be determined, and the evaluated object has 19 evaluation indexes (Liang and Cao.2007).

(2)Determine grade evaluation set $V=\{v_1, v_2, \dots v_5\}$, the evaluation results of third class cities' low carbon economy are divided into five levels: excellent, good, general, poor, very poor. The specific classification is shown in table 4.

14

The second-level evaluation index		ev	aluation grad	de	
Resident income A1;	Very high	high	general	low	Very low
Low carbon industry output value A2;	Very high	high	general	low	Very low
GDP per capita A3 ;	Very high	high	general	low	Very low
Financial input A4;	Very high	high	general	low	Very low
Nature reserve area ratio B1;	very large	large	general	small	very small
coverage of green land B2 ;	very large	large	general	small	very small
green area per capita B3;	very large	large	general	small	very small
Environmental protection investment ratio B4;	very large	large	general	small	very small
Low carbon popularity C1;	very large	large	general	small	very small
urbanization ratio C2;	very large	large	general	small	very small
car number per capita C3 ;	Very few	few	general	many	A lot
housing area per capita C4	very large	large	general	small	very small
acquisition and preservation ratio of greenhouse gas D1;	very large	large	general	small	very small
low carbon material ratio D2;	very large	large	general	small	very small
utilization ratio of the three wastes D3;	very large	large	general	small	very small
garbage disposal D4;	Very good	good	general	poor	very poor
CO2 per GDP E1 ;	little	A little	general	much	A lot
SO2 per GDP E2 ;	little	A little	general	much	A lot
energy consumption per GDP E3;	very small	small	general	large	very large

Table 4: The second-level evaluation index classification of third class cities' low carbon economy

(3)Determine the fuzzy evaluation matrix $R=(r_{ij})_{n\times m}$.

Using the expert judgment method, the second-level indexes of third class cities' low carbon economy are evaluated. Here we choose 10 experts to evaluate. And we could get that:

$$R_{A} = \begin{bmatrix} r_{11}^{(A)} & r_{12}^{(A)} & \cdots & r_{15}^{(A)} \\ \cdots & \cdots & \cdots \\ r_{41}^{(A)} & r_{42}^{(A)} & \cdots & r_{45}^{(A)} \end{bmatrix} \text{ and } r_{j} = \text{The expert number of level J/10.}$$

Similarly to the following conclusions: R_B , R_C , R_D , R_E

(4)Determine the weights of evaluation indexes at all levels.

First, select 10 experts to score, and get the average value. Confirm the influence of each index so as to determine the comparison matrixes: A, B, C, D, E, P.

Second, calculate the weight vector of each index, the five weight vectors could be obtained as follows: γ_A, γ_B ,

 γ_{C} , γ_{D} , γ_{E} , $\gamma_{R}.$

Finally, carry on the consistency check.

(5)According to the corresponding weight of each second-level evaluation index, the fuzzy evaluation matrixes of 5 first-level evaluation indexes could be calculated as follows: $R_p = (\gamma_A^T R_A \gamma_B^T R_B \gamma_C^T R_C \gamma_D^T R_D \gamma_E^T R_E)^T$.

According to the weights of the first-level evaluation indexes, the level evaluation vector of third class cities' low carbon economy could be obtained as follows: $w = \gamma_{p}^{T} R_{p}$.

Based on the maximum principle, the biggest component among *w* is the level of third class cities' low carbon economy.

5. The empirical analysis of third class cities' low carbon economy evaluation

16

Target layer	Target layer the evaluation index system of third class cities' low carbon economy P							
First-level evaluation indexes	Economic factors A		Social	Technical	energy emission factors E	weight	largest eigenvalue	consistency ratio
Economic factors A	1	1/5	1/3	1/2	1/7	0.0506		
Environmental factors B	5	1	3	2	1/3	0.2339		
Social factors C	3	1/3	1	2	1/4	0.1285	5.1457	0.0325
Technical factors D	2	1/2	1/2	1	1/5	0.0931		
energy emission factors E	7	3	4	5	1	0.4939		

Table 5: The comparison matrix and the test results of first-level evaluation indexes aiming to the target layer

Table 6: The comparison matrix and the test results of second-level evaluation indexes aiming at first-level evaluation indexes' economic factors A

first-level evaluation indexes		econom	ic factor	s A			
second-level evaluation indexes	Resident income A1	Low carbon industry output value A 2	GDP per capita A 3	Financial input A 4	weight	The largest eigenvalue	The consistency ratio
Resident income A1	1	1/5	1/2	1	0.1154		
Low carbon industry output value A 2	5	1	5	2	0.5455	4.2507	0.0939
GDP per capita A 3	2	1/5	1	2	0.1940		
Financial input A 4	1	1/2	1/2	1	0.1451		

Table 7: The comparison matrix and the test results of second-level evaluation indexes aiming at first-level evaluation indexes' environmental factors B

first-level evaluation indexes		Envir	onmental fa	ctorsB			
second-level evaluation indexes	Nature reserve area ratio B1	coverage of green land B2	green area	Environmental protection investment ratio B4		The largest eigenvalue	
Nature reserve area ratio B1	1	1/3	1/4	1/2	0.0931		
coverage of green land B2	3	1	1/3	2	0.2452		
green area per capita B3	4	3	1	3	0.5050	4.0873	0.0327
Environmental protection investment ratio B4	2	1/2	1/3	1	0.1567		

Table 8: The comparison matrix and the test results of second-level evaluation indexes aiming at first-level	
evaluation indexes' social factors C	

first-level evaluation indexes		social fa	actors C			The	
second-level evaluation indexes	Low carbon popularity C1	urbanization ratio C2	car number per capita C3	housing area per capita C4		largest eigenvalu e	The consistenc y ratio
Low carbon popularity C 1	1	7	5	9	0.648 9		
urbanization ratio C 2	1/7	1	1/4	3	0.088 1	4.2313	0.0866
car number per capita C 3	1/5	4	1	5	0.217 8	4.2313	0.0000
housing area per capita C4	1/9	1/3	1/5	1	0.045 2		

Table 9: The comparison matrix and the test results of second-level evaluation indexes aiming at first-level evaluation indexes' technical factors

first-level evaluation indexes		technical	factors D				
second-level evaluation indexes	acquisition and preservation ratio of greenhouse gas D1	material		disposal		The largest eigenvalue	concictonev
acquisition and preservation ratio of greenhouse gas D1	1	1/4	1/3	5	0.1445		
low carbon material ratio D2	4	1	1/2	9	0.3705	4.2323	0.0870
utilization ratio of the three wastes D3	3	2	1	6	0.4406		0.0670
garbage disposal D4	1/5	1/9	1/6	1	0.0444		

Table 10: The comparison matrix and the test results of second-level evaluation indexes aiming at first-level evaluation indexes' energy emission factors E

first-level evaluation indexes		energy er	nission factors E			The consistency ratio	
second-level evaluation indexes	CO2 per GDP E1	SO2 per GDP E2 E2	energy consumption per GDP E3	weight	The largest eigenvalue		
CO2 per GDP E1	1	4	3	0.6250			
SO2 per GDP E2E2	1/4	1	1/2	0.1365	3.0183	0.0176	
energy consumption per GDP E3	1/3	2	1	0.2385			

Table 11: The level evaluation results of Weifand	low-carbon economy's second-level evaluation indexes

second-level evaluation indexes	evaluation level				
Resident income A1;	0	2	6	2	0
Low carbon industry output value A 2 ;	1	2	4	2	1
GDP per capita A 3;	1	3	3	2	1
Financial input A 4 ;	0	2	4	3	1
Nature reserve area ratio B1;	0	2	5	2	1
coverage of green land B2 ;	0	1	7	1	1
green area per capita B3 ;	2	4	4	0	0
Environmental protection investment ratio B4;	5	3	2	0	0
Low carbon popularity C 1 ;	3	5	1	1	0
urbanization ratio C 2 ;	1	3	5	1	0
car number per capita C 3 ;	4	3	3	0	0
housing area per capita C4	1	2	4	3	0
acquisition and preservation ratio of greenhouse gas D1;	0	2	6	1	1
low carbon material ratio D2;	4	5	1	0	0
utilization ratio of the three wastes D3;	2	4	3	1	0
garbage disposal D4;	1	3	5	1	0
CO2 per GDP E1E1 ;	2	3	4	1	0
SO2 per GDP E2 ;	1	3	6	0	0
energy consumption per GDP E3;	3	2	4	1	0

(1)The weight solution interviewing the experts of Weifang low carbon economy research, according to its results, the comparison matrixes could be determined. The calculation results are shown in table 5 to table 10. (2)The evaluation research of Weifang low-carbon economy

First of all, ten experts carry on the fuzzy evaluation to the 19 second-level evaluation indexes of Weifang lowcarbon economy. The results are shown in table 11:

Secondusing procedure MATLB(attachment), the evaluation vector of Weifang low carbon economy is calculated as follows: w=(0.2098,0.3081,0.3877,0.0807,0.0137), Based on the maximum principle we could get that the evaluation level of Weifang low carbon economy is general.

6. Conclusion

It is feasible to use the fuzzy mathematics to evaluate the third class cities' low carbon economy. From the application we could get that the 5 first-level indexes of third class cities' low carbon economy don't coordinate well, especially the environmental aspect. Here I suggest that the government of third class cities strengthens its management coordination through administrative, marketing and technical means, changes the energy structure, reduces carbon emissions and improves the use of renewable resources.

Reference

Hallowell M.R., Hansen D., 2016, Measuring and improving designer hazard recognition skill: Critical competency to enable prevention through design. Safety Science, Vol.82.DOI: 10.1016/j.ssci.2015.09.005

Han Z.G., 2005, Mathematical modeling method and its application [M]. Beijing: higher education press.Hassanain M., Anil S., Abdo A., 2016, Institutional Research Evaluation Model (IREM): A framework for measuring organizational research trends and impact and its application in medical academia in Saudi Arabia. Journal of Epidemiology and Global Health.DOI: 10.1016/j.jegh.2016.03.002

Liang B.S., Cao D.L., 2007, Fuzzy mathematics and its application [M]. Beijing: science press.

Li T., 2015, Application of fuzzy mathematics in the supermarket customer degree of satisfaction evaluation [J]. Journal of capital normal university, 6 (3): 15-18.

Wang B.Z., 2000, Growth of excellent teachers in middle schools and normal universities educational reform exploration [M]. Beijing: people's education press, P54.

Zhang Y.W., 2016, Research on Cost-benefit Evaluation Model for Performance-based fire Safety Design of Buildings. Procedia Engineering, Vol.135.DOI: 10.1016/j.proeng.2016.01.096

18