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Process systems engineering (PSE) approaches are useful for facilitating the optimal design and operation 

of industrial plants. This study develops a modified Luus-Jaakola adaptive random search (LJ-ARS) 

procedure by incorporating some features from the line-up competition algorithm (LCA). The search 

procedure is conducted using multiple points, and cooperation is exhibited as each point moves toward the 

next-best point to improve its position. The search space of each point is influenced by its rank, but a lower 

limit for the space reduction factor is specified to prevent premature convergence. A probabilistic rounding-

off procedure is used for integer variables, while the penalty function approach is used for constraint 

resolution. This modified algorithm is encoded in Microsoft Excel and Visual Basic for Applications and is 

used to optimize a mixed-integer nonlinear programming model of an integrated algal bioenergy system, 

while the original LJ-ARS is unable to locate a feasible solution. The model considers six processes: 

cultivation of the microalgae Chlorella vulgaris, dewatering, cell disruption, pretreatment, oil extraction, and 

transesterification. The optimal solution, which has been verified using LINGO 14.0, involves microfiltration 

(for dewatering) and oven drying, but does not utilize any cell disruption process due to high capital cost 

and energy requirement. This implies that if residual biomass can be sold, it may be more economical to 

cultivate more algae than to increase the oil yield by means of cell disruption. Furthermore, it is essential to 

utilize the residual biomass to ensure that the system produces more energy than it consumes. Finally, it is 

more economical to use residual biomass to supply energy rather than to sell the residual biomass while 

purchasing electricity. 

1. Introduction 

Biomass is known as a carbon neutral fuel, because the CO2 it emits upon combustion is originally fixed 

from the atmosphere during growth. The technology required for production of microalgal biomass is 

already sufficient (Chisti, 2007), although exclusive production of biodiesel may be economically infeasible 

(Pinzon et al., 2014). Razon and Tan (2011) showed that the net energy ratio (energy output divided by 

energy input) for production of microalgal biofuel could be less than 1, implying that certain processing 

pathways consume more energy than they produce. Process systems engineering (PSE) techniques are 

used to model and optimize bioenergy systems such as biomass gasification (Sun et al., 2014). If a 

process system is represented as a linear model, location of the optimal solution can be guaranteed using 

standard methods such as the simplex algorithm. However, significant computational difficulties may be 

encountered in the optimization of nonlinear models (Martelli and Amaldi, 2013). 

According to Jenkins (1997), the assumption of constant cost scaling for bioenergy systems cannot be 

made without exact data. An MINLP model of a biorefinery by Zondervan et al. (2011) considered 72 

process options for various stages such as pre-treatment, fermentation processes, separation processes, 

and fuel blending. Various algorithms for optimization of NLP/MINLPs are currently in use, and 

metaheuristic or stochastic techniques are one such class of algorithms. One of these techniques is direct 

search or adaptive random search by Luus and Jaakola (1973). Variations of the original Luus-Jaakola 

method have been proposed through addition of region collapse and tolerance value parameters (Luus 
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and Harapyn, 2003). Poplewski et al. (2011) used variable-specific parameters rather than a fixed space 

reduction factor. The use of multiple starting points was first proposed by Litinetski and Abramzon (1998). 

For constraint resolution within the LJ-ARS framework, Luus (1996) demonstrated the efficiency of a 

quadratic penalty function coupled with a Lagrange multiplier for models containing equality constraints. 

Another metaheuristic algorithm that resolves constraints using penalty functions is the line-up competition 

algorithm (LCA), which was shown to take lesser computation time than other evolutionary algorithms 

when used to optimize NLP models (Yan and Ma, 2001) and MINLP models representing multi-product 

chemical batch processes (Yan et al., 2004). 

Hybrid algorithms have been formulated to combine the strengths of multiple metaheuristics. Adaptive 

random search may be used as the primary search pattern, or as a subroutine to a different search 

procedure. Gao et al. (2004) showed that direct search with particle swarm optimization exhibited better 

speed and accuracy than basic genetic algorithms and simulated annealing procedures. Jeżowski et al. 

(2005) showed that direct search works better than genetic algorithms for problems with discrete variables, 

while Liao and Luus (2005) demonstrated that the LJ algorithm is generally faster and more reliable than 

genetic algorithms. The LJ-ARS has been used in optimization of nonconvex models (Salcedo, 1992) and 

models with multiple local optima (Jeżowski et al., 2005). In addition to these advantages, the ease of 

programming the LJ-ARS has led to its frequent use, but there remains room for improvement. 

The Luus-Jaakola algorithm adapted for optimization of discrete variables (Luus, 1975) uses a search 

procedure around a local optimum, but the global discrete optimum may be located elsewhere. The 

performance of the LJ-ARS is greatly affected by algorithm parameters (Salcedo et al., 1990) as well as by 

problem class and characteristics (Liao and Luus, 2005). Furthermore, it has been found that 

metaheuristics do not always succeed in finding the global optimum quickly or consistently for certain 

models, such as when phase equilibria and thermodynamics are involved (Fernández-Vargas et al., 2013). 

The rest of this paper is organized as follows. The formal problem statement is given in the next section, 

and the development of the modified LJ-ARS based on the original LJ-ARS and LCA is shown. A mixed-

integer nonlinear programming model of an integrated algal bioenergy system is formulated, and is 

optimized using the modified LJ-ARS. Conclusions about the optimal design are presented. 

2. Problem Statement 

A mixed-integer nonlinear programming (MINLP) model representing an integrated algal bioenergy system 

may be written according to the following framework: 

max (f) = Σc
T
y - Σk

T
x

α
  (1) 

Ax = y  (2) 

x ≤ Mb  (3) 

Qb ≤ h  (4) 

Eq(1) is the objective function of maximizing profit, where c represents the unit prices of net flows y, while 

k and α represent the cost factor and scaling exponents for nonlinear cost functions of process units with 

capacity x. Material and energy balances are represented in Eq(2) by process matrix A, the coefficients  of 

which may be variables defined by ad hoc equations. Eq(3) uses the big-M constraint to constrain binary 

variables b, and Eq(4) uses topological matrix Q to limit allowable process system configurations. The 

model is considered nonlinear because of nonlinear terms in the process matrix and in the capital cost 

functions. A modified LJ-ARS is developed and used to optimize this model. 

3.  Development of Modified Algorithm 

The original algorithm of Luus and Jaakola (1973) is initiated by generating a number of random points 

uniformly given the initial random point and search space. The objective function is evaluated for each 

point that satisfies all constraints. The best objective function so far is recorded, along with its 

corresponding location, and this is used as the new starting point for the next iteration. 

The line-up competition algorithm (LCA) by Yan and Ma (2001) uses families of points to search the 

space. Points are no longer discarded, as constraints are resolved using the penalty function approach. 

Each point conducts its own local search, and the best point within each family is retained. The families 

are ranked, and each family’s search space is then adjusted based on its rank. Some features of the LCA 

are used to develop the modified LJ-ARS as discussed in the remainder of this section. 
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The modified algorithm is initialized by generating a number of random starting points and evaluating them 

according to the objective function f. These points are ranked from worst to best. A movement step is 

performed by having a point of lower rank move towards the point ranked just above it. The magnitude of 

this movement is proportional to the difference of their objective function evaluations. The search space of 

each point varies with its rank, in a manner similar to the scheme of Yan and Ma (2001). However, instead 

of assigning search space multipliers uniformly between 0 to 1, a minimum value is used to prevent 

premature convergence. A sample iteration of the modified LJ-ARS is shown in Figure 1. 

 

Figure 1: Modified LJ-ARS algorithm for min f = x1
2
 + x2

2
: (a) initial generation and ranking, (b) movement, 

(c) generation of points within rank-based search space, and (d) selection of best point within each family 

For discrete variables in MINLPs, the floor and ceiling functions are used to probabilistically round off 

randomly generated values to the nearest integers. The closer an integer is, the probability that rounding 

off will be in that direction is increased proportionally. Whenever an unrelaxable constraint is violated, a 

random feasible location is generated from the nearest allowable value and the current range. However, 

violations of relaxable constraints are resolved using a penalty function expressed as the weighted sum of 

constraint violations. The weights are used to give appropriate magnitude against the objective function. 

4. Optimal Design of Integrated Algal Bioenergy System 

The modified LJ-ARS is used to optimize the MINLP model of an integrated algal bioenergy system 

containing highly scalable processes within a microalgae-to-biodiesel conversion system (Halim et al., 

2012a). Chlorella vulgaris with an assumed elemental composition of C106H181O45N16P is cultivated in a 

raceway pond (Rogers et al., 2014) using wastewater containing nitrogen and phosphorus nutrients. 

Dewatering to a concentration of 200 kg/m
3
 is conducted using either centrifugation or microfiltration. Cell 

disruption (bead milling or high-pressure homogenization) may be used to increase oil yield. Solar drying 

has negligible energy requirement compared to oven drying, but it has a higher capital cost. Algal oil is 
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extracted using completely recoverable hexane, and is transesterified into biodiesel. Unit prices of raw 

materials and products are taken from Yan et al. (2014). Nonlinear cost-capacity functions for the raceway 

pond are from Chisti (2007), those for the centrifuge, microfilter and bead mill are derived from Loh et al. 

(2002), and those for the remainder of the process units are from Peters and Timmerhaus (1991). 

Capacities are expressed in terms of mass flow rate of dry biomass. Table 1 shows the process data used 

within the model, which contains 28 variables (8 binary and 20 continuous) and 28 constraints. The model 

and algorithms have been encoded in Microsoft Excel and Visual Basic for Applications (VBA). 

Table 1:  Process data 

 Unit Cost ($/kg) Calorific Value Other Information References 

Biodiesel 1.18
 

37.0 MJ/kg
 

Demand of 10,000 t/y Razon and Tan, 2011 

Glycerol 1.03    

Residual Biomass 0.294 9.36 MJ/kg  McKendry, 2002 

Electricity 0.0417/MJ    

Methanol 0.557    

 

The original LJ-ARS failed to yield a feasible solution after 500,000 function evaluations, while the modified 

LJ-ARS located the following solution in less than 100,000 function evaluations. The system configuration 

resulting in the maximum annual profit utilizes the following process units: centrifugation for dewatering, no 

cell disruption process, and solar drying. The optimized system has an overall annual profit of 52.5 M$ and 

produces biodiesel at a rate of 0.347 kg/s (10,000 t/y for a plant operating 8000 h/y), which is equivalent to 

12.8 MW of energy. Some of the residual biomass is used to generate the 25.2 MW of energy required by 

the process system, while the remainder is sold. The corresponding net energy ratio of this system is 3.36. 

The solution in Figure 2 has been verified using LINGO 14.0. Gray boxes for process units indicate that 

they are excluded from the optimal design. 

Microfiltration is selected over centrifugation for dewatering, despite its higher capital cost. This may be 

because of its higher yield and lower energy requirement. Neither of the cell disruption processes is used 

within the optimal configuration. The capital cost of a bead mill is too high, while the energy requirement of 

the high-pressure homogenizer is not justified by the increased yield of algal oil. Oven drying is used 

despite the energy requirement, but its capital cost is lower than that of solar drying. The mass flow rate of 

the dry biomass remains constant throughout dewatering and pretreatment. 

The optimal solution settles for a low yield of algal oil from dried biomass, choosing instead to produce a 

larger mass of algae and discard most of it as residual biomass. This implies that it may sometimes be 

more economical and energy-efficient to cultivate more algae rather than disrupt algal cells to increase 

their oil yield upon extraction. This may hold true because the wastewater fed to the raceway pond has no 

associated purchasing costs. All the electricity requirements are supplied by the residual biomass, implying 

that it is more economical to use residual biomass as fuel rather than to sell it while purchasing electricity. 

Cultivating a large amount of algae corresponds to a large amount of residual biomass after oil extraction, 

and the sale of all the residual biomass can improve the economic feasibility of the system. The solution 

also reveals that residual biomass may contribute more profit and energy to the system compared to 

biodiesel, and the net energy ratio of the system would be less than 1 if the only equivalent energy 

considered is that of biodiesel. This implies that utilizing residual biomass is necessary for the system to 

be feasible in terms of energy generation. 

Process Unit Cost-capacity 

Function ($) 

Energy Requirement 

(MJ/kg dry biomass) 

Other Information References 

Raceway Pond 51,200x
0.6 

5.63×10
-5 

  

Centrifuge 59,500x
0.49

 2.15 95 % recovery Safi et al., 2014 

Microfilter 412,000x
0.68

 0.685 100 % recovery Danquah et al., 2009 

Bead Mill 364,000x
0.74

 23.1 96 % algal oil increase Doucha and Livansky, 

2008; Halim et al., 

2012b 

High-Pressure 

Homogenizer 
2,740x

0.6
 529 405 % algal oil increase 

Oven Dryer 331x
0.42

 
7.53 MJ/kg H2O 

evaporated 

6.4 % less algal oil per 

10 % increase in 

moisture 

Genskow et al., 2008 

Solar Dryer 3,540x
0.6

 0 

Extraction Vessel 153x
0.42

 
2.462 

 
Dassey et al., 2014 

Transesterification  4840x
0.54
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Figure 2: Flowchart of Optimal Integrated Algal Bioenergy System 

5. Conclusions 

A modified Luus-Jaakola adaptive random search (LJ-ARS) algorithm has been developed by 

incorporating features from the line-up competition algorithm (LCA). This modified LJ-ARS locates the 

optimum of the integrated algal bioenergy system model, while the original LJ-ARS is unable to find a 

feasible point. The final solution obtained indicates the maximum annual profit and the corresponding net 

energy ratio. It also reveals the optimal configuration and capacities of the process units, as well as the 

resulting net flow rates of raw materials and products. The solution demonstrates that the capital costs and 

energy requirements of cell disruption may be too high to justify the higher yield of algal oil extraction. 

Utilizing some of the residual biomass as fuel for the system can be less costly than purchasing electricity, 

and sale of any remaining biomass further improves the profitability of the system. Future work may 

include the modelling of additional process alternatives, manufacture of high-value chemical products, or 

may address uncertainties in the model, such as in the process data. 
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